
IDA PA\l'lR Pl' I

Rk1"VILWS 01- SIiI('HTI) SYS,Ti AND)
SOFTWIARE Tou-l 10k

SiR AEG IC DE',FE-NSE --' PIT [CATIONS

David A. Wheeler
Dennis W. File
Edgar 11. Sibley
J. Bret Michael DTIQ

CECTE

February 1990

Preponi djoIf
Siratc'ic Defenwie Inifiativc o)rganizat~ion

Best Available Copy

Ns'i IfljTi. FOR DEFENSIEANALYSES
io iO I N liveparj~d Strc0 Alexondria Virginia 22311-1772

IOA~g upl0 ImsPr~f~ I. 64

i')A piIithua Ih v tBowla 0itesf4 nit f1$dill t~ I 4;ti 4111 "aweir

I lecuivei Brooich, the Coffires aid/so he $sP'Ii. or Icd as*n5 Iss$ that hove
LI'inlltEAMl *cs0nMI Imtpillatisma IDA flepetas vsm fcoloWN by seittal poas o st o
Iq anauls their high quality and ralovents 10 M ptob.4 tnC'41' aod lbey ar taeste,1
by the Ptesideal of IDA,

Group Reports

rGroup Reapouts routil1 th ilogs and reivlta ol IDA ottablitbsd vduiri be fevtseat
Pinola compoed of astom Inldliidvals addneaaig Majtor Item wWbb ONMeI1 wovill be
ihe sublect at am IDA 1111eW. IDA Oteegv AmPmn aea ryviewed III the Semi Itmvsta
isponsible leo in$ prsjell aid $*it as Weldetd by IDA to ofat e, mooh quaity, OA
taievence to the preblem stuadli, and pro relossd by th Pirelo mf MA.

Ppwra. also eutbootaf sod gureluilly considered litat o1 IDA. 404russ usls that
arm porrower in sloe OM theds coeteod in Ieorts. IDA Papers awe revewed Is enuvre
that th" toest the kith *nmeard taptid of Molen.. papa Is piotletemue jesi-mala W
formal Ateiony reperts.

Documents
IDA Dmisvota awe used I tee toowmilOm ofa S 00 hu I ~ W the aiMlyul (ma) roecerdti
tubstaulive work dae Is qut rosettes salies. 11) Io isme IM pramhlop of
contortions@o asllofs. (0) to Inital "teable prollothovy sod WmtIIt iset of
&malyses. (0) to reseed dmo devleepod Ms te atw" amO knetegabm. W (e) to leewardl
Inlmfemsto lot Ie seaMeliy N- -e!isu sod meeetivalbd. Thm uewal of OA Dmola
is stalled to their mdio MW kudmd ue.

The wort reported In IS I eeI wans esoMimited eedstd MCA M 64 C OM fir
iso Oesotieet of Diesft . IMe 00~9e4le $10tot IDA mwmted OeM mW I*Mfkte
%N44"seM by 1k DoorMal of eifse. me shouldw me atosek be ceeue m e

til Fmew beg bse ItesleuW by IGS Is some old IN mooeltsg MalMiai s
tbeireughMe. 0* *f I~ M$1111011 emetylest maOdme 009 1 sie

The, OoWorem $I OWulu~m 4 pmhd as @WONd~ 0"mi 0 supramIme DI

~Form Approved

REPORT DOCUMENTATION PAGE oU o 07o4o
VU.repatmg buc. fan hi coUlctaof infmstia is utamatd t. -aag l p. .eapoma. incuding th ies for r,eiigalic om. seain exa data souro..

gahtigm mainaiig. . the data neadm ad Mmpleting a revewing the ooflecttwi of intornation. Sad comma. a regarding this burdn astmat or my other spect of ti
coil etnof infm-uaaion, icluding uggestios fr reducing this burden, to WaMing~tco Headquamtaz Servica.m Directora for Inofmattoti Opersaima an Rea 1215 Jeffetmn
Davis Highway Suite 1204, Arlington. VA 22202-4302. ad to the 0& of Maaemect and Budget, Paee'wrk Reduction Project (O704-088), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREDFebruary 1990 Final

4. TMI AND SUBTiTLE 5. FUNDING NUNMERS
Reviews of Selected System and Software Tools for Strategic Defense MDA 903 89 C 0003
Applications

T-R2-597.2

6. AUTHOR(S)
Dennis W. Fife, Edgar H. Sibley, J. Bret Michael, David A. Wheeler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER

Institute for Defense Analyses (IDA) IDA Paper P-2177
1801 N. Beauregard Street
Alexandria, VA 22311-1772

9. SPONSORING/MONI'FoRING A4 ENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Strategic Defense Initiative Organization (SDIO) REPORT NUMBER

SDIO/ENA
Room 3E149, The Pentagon
Washington, D.C. 20301-7100

11. SUPPLEMENTARY NOTES

12a. DIWRIBUTION/AVAILABLrITY STATEMENT 12b. DISTRIBUTION CODE
Public release/unlimited distribution. 2A

13. ABSTRACT (Maximum 200 wotd)

Information about certain software engineering tools relevant to the needs of the Strategic Defense Initiative
(SDI) program is described in this paper. A broad sample of available off-the-shelf tools and their basic
function and scope are provided. The products reviewed are used for requirements analysis and preliminary
design. These tools fall into the category of computer-aided software (or systems) engineering (CASE).

14 SUBJEC TERMS 15. NUMBER OF MPoAS
Software Engineering Tools; Strategic Defense Initiative (SDI); Computer-Aided 90
Software Engineering (CASE); Requirements Analysis; Preliminary Design. 16. PRICE CODE

17. SECURWY'" ,% LFICXON 18. SECURITY CLASSCATION 19. SECURfTY CLASSMICATION 20. LMITATION OF ABSThACT
OF REPLW OF 7W$ AOE OFABSRACT
Unclassified Unclassified Unclassified SAR

NSN 7540.01-280-5500 Pm 206 (Rev. 2419)
plowrd by ANSI SOL Z39-18I 198-1(Q

I
I
3

I IDA PAPER P-2177

I
3 REVIEWS OF SELECTED SYSTEM AND

SOFTWARE TOOLS FOR
STRATEGIC DEFENSE APPLICATIONS

1
David A. Wheeler

Dennis W. Fife
Edgar H. Sibley
J. Bret Michael

February 1990

I
I

I DA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-R2-597.2

I

i TABLE OF CONTENTS

1. INTRODUCTION 3

1.1 PURPOSE 3

1.2 SCOPE 3

1.3 APPROACH 3.....................3

1.4 CONCLUSIONS.................. 5

1.5 SUMMARY REVIEWS 7

3 APPENDIX A - SOFTWARE THROUGH PICTURES 9

APPENDIX B -TEAMWORK 13

APPENDIX C -TAGS 17

APPENDIX D -AUTO-G21

APPENDIX E - DCDS 25

3 APPENDIX F - RDD 29

APPENDIX G - STATEMATE 35

3 APPENDIX H -REFINE 39

APPENDIX I -SPECTRUM 45

APPENDIX J - DESIGN/IDEF AND DESIGN/FAMILY 47

APPENDIX K - 001 53

APPENDIX L -FORESIGHT 57

APPENDIX M - VIRTUAL SOFTWARE FACTORY61

APPENDIX N - ADAGEN 65

APPENDIX O -ACRONYMS69

Acoession For

ITIS GRA&I
0, DTIC TAB 03

< Unannounced 0
Justifloati @-

BY
Distribution

Availability Co60

plot Spolal
Lvel or

I

TRADEMARK ACKNOWLEDGEMENTS

I All terms mentioned in this paper that are known to be trademarks or service marks are

listed below. Use of a term in this paper should not be regarded as affecting the validity

of any trademark or service mark.

Apple is a registered trademark of Apple Computer, Inc.

Context is a registered trademark of Mentor Graphics.

DEC, VMS, ULTRIX, and VAXstation are registered trademarks of Digital Equipment Corporation.

FMap and TMap are trademarks of Hamilton Technologies, Inc.

IBM is a registered trademark of International Business Machines Corp.

Macintosh is a trademark licensed to Apple Computer, Inc.3Microsoft and MS-DOS are registered trademarks of Microsoft Corp.

PostScript is a trademark of Adobe Systems, Incorporated.5 UNIX is a registered trademark of AT&T.

I
I
I
a
I
I
I
I
I
I
I

I

PREFACE

IDA Paper P-2177, Reviews of Selected System and Software Engineering Tools

for Strategic Defense Applications, was prepared for the Strategic Defense Initiative

Organization (SDIO) in response to tasking contained in IDA Task Order T-R2-597.2

under contract MDA 903-89-C-0003.

This paper is intended to be a supplement to IDA Paper P-2062, Evaluation of

Computer-Aided System Design Tools for SDI Battle Management/C3 Architecture
Development, dated October 1987. The current document provides updated information

on the tools evaluated in the previous document plus a number of additional tools not

covered in the previous document.

The authors wish to thank the many reviewers within IDA: Terry Mayfield,

James Baldo, Cathy Jo Linn, Howard Cohen, and Debbie Heystek. We also express our
appreviation to Sylvia Reynolds for her editorial advice and assistance, and to Donna

Graham for her support in formatting the document.

V

I
a
I
I
I
I
I

I vii

I

II

31. INTRODUCTION

1.1 PURPOSE

This paper provides current information about certain software engineering tools
relevant to the needs of the Strategic Defense Initiative (SDI) program. It partially
fufills requirements of IDA Task T-R2-597.2. The paper covers a broad sample of avail-
able, off-the-shelf tools, and describes their basic functions and scope. The information
is for technical introduction and current awareness of this field, not for assessing
effectiveness of any tool or for competitively selecting one tool from among those avail-
able. In choosing the tools to be covered, IDA has considered SDI needs for rigorous
specification, thorough diagnostics to validate design, and the possibility of automatic
code generation for prototype validation.

1.2 SCOPE

The paper provides information on selected commercial tools which, for various
reasons, could not be covered in an earlier evaluation [Fife 871. It also discusses recent
enhancements and other information on the tools that were previously evaluated.

The products that were reviewed are used for requirements analysis and prelim-
inary design. These tools fall into the category that is often called computer-aided
software (or systems) engineering (CASE).

1.3 APPROACH

The following tools are reviewed in the order shown and except for DCDS/Ada,
all product names are trademarks of the companies indicated:

Product Vendor/Sponsor
Software Through Pictures Interactive Development Environments, Inc.
Teamwork Cadre Technologies, Inc.
TAGS Teledyne Brown Engineering

h1

I

Auto-G Advanced System Architectures 3
DCDS/Ada TRW/U. S. Army Strategic Defense Com-

mand 3
RDD-100 Ascent Logic Corp.
STATEMATE i-Logix, Inc.
Refine Reasoning Systems, Inc. I
Spectrm Software Architecture and Engineering, Inc.
Design/family (incl., Design/IDEF) Meta Software Corp. 3
001 Hamilton Technologies, Inc.
Foresight Athena Systems, Inc.
VSF Systematica Limited
Adagen Mark V Systems Limited

Inclusion of a tool in this report does not imply a recommendation for its use in
any particular role for SDI. The reviews do not include the many PC-based CASE tools
already established in commercial software practice, most of which are oriented toward U
dataflow diagramming. Such tools are not considered to have high potential for SDI
applications because of their limitations, especially in graphics and specification depth. 3

Each tool was reviewed relative to a number of requirements areas established in
the previous report. The identifying heading and a brief scope statement for each are

listed below.

Heading Scope n
Graphics and Editing User interface characteristics, including ease of use
Design Semantics and Support Specification depth for fully specifying real-time defense systems
Team Design Support Supporting team projects, including configuration management, etc.
Documentation and Output Reporting and documenting design results
Static Diagnostics Testing design completeness and correctness, excluding behavior
Simulation Simulating the designed system's behavior to validate design
Adaptability Extending or tailoring the tool for special needs
Interoperability Using the tool or its output with other tools 3
Traceability Relating design results to original requirements
Information Modeling Support Representing both the designed system's data and design semantics 3
Distinguishing Capabilities Summary of major distinctive features

Each review is based upon IDA analysis, tool manuals and technical papers, dis- I
cussions with vendors, and tool demonstrations. The significance and complexity of some
tools warrants more analysis than could be done for this report. U

2

I

I
1 1.4 CONCLUSIONS

This paper does not seek to define which tools are suitable for specific tasks, or

which meet SDI requirements, or in general, which tool is best for a certain task.

The following offers one way to categorize the tools according to their general

I usage and state of development:

a. Well known tools, previously reviewed, with strong commercial and govern-

Sment clientele and significant usage on large defense applications: TAGS,
DCDS/Ada, Auto-G, Software Through Pictures, and Teamwork;

3 b. Tools more recently released that have gained significant interest and use for

defense applications and are becoming strong competitors of the group above:

RDD, Foresight, Design/farily, and STATEMATE;

c. Promising tools which are available, though still undergoing research and

development to complete functionality that would be important to SDI appli-

cations: Adagen, 001, Refine, Spectrum, and VSF.

IDA has previously reported a wide range of differences in technique, functional-

ity, and potential effectiveness among CASE tools [Fife 871. The tool reviews in this

report, though not as detailed as the earlier report, illustrate that more capable tools are

emerging for SDI consideration than were available previously. The well known tools are

being enhanced, and prospects for other innovative or unique tools are very encouraging.

Some tools appear to have advantages for particular kinds of technical problems

or project situations. An advantage, for example, may be familiarity to certain technical

personnel, a certain kind of documentation output, ease of validating a certain engineer-
ing approach, or the suitability of a tool's design method for a key problem such as secu-

riv. Provided that the costs of training and initial data capture are acceptable, SDI
should exploit the unique advantages that different tools may offer in filling niches within

the scope of SDI needs.

A number of other conclusions can be drawn from the capabilities and enhance-

ments seen in the group of tools included in this review:

a. Deficiencies of typical dataflow diagramming tools for real-time defense

applications, which IDA previously noted, appear to be recognized and are
leading to enhancements that generalize specification capabilities.

I b. Simulation capability clearly is gaining importance as a means to extend diag-
nostic and validation support given by tools. Auto-G produces SADMT [Linn

3
3I

I

88], TAGS and DCDS/Ada have their own simulation components, and 3
STATEMATE, RDD, Teamwork, Foresight, Design/family, Refine, and

Spectrum have, or soon will have, either simulation or animation features. 3
c. Capability to automatically generate code suitable for prototype evaluation is

demonstrable, though overall quality and specific limitations iteed further 3
evaluation. Auto-G, TAGS, STATEMATE, and Adagen have demonstrated

Ada code generation. Auto-G also generates C code. Refine and Spectrum,

generating LISP and C code respectively, also illustrate commitment to code

generation from a tool. The goal is to have a tool produce complete, compil-

able programs, as opposed to producing just package specifications or pro- 3
gram skeletons which programmers then must complete manually. A designer

must specify software components and behavior fully at an algorithmic level in

order to fully generate code. A tool must have the specification depth to sup- I
port this design effort.

d. Automated documentation support and an interface to electronic publishing I
software, covering MIL-STD-2167A or user-defined standards, has become a

typical tool capability. TAGS, RDD, DCDS/Ada, Teamwork, Software 5
Through Pictures, and STATEMATE provide documentation templates.

e. Availability of a tool on several popular workstations is becoming common-

place. Teamwork and Software Through Pictures previously demonstrated

this, and now TAGS, RDD, Design/family, STATEMATE, and Adagen are

available on several workstations. DCDS/Ada is now available on Sun

workstations.

f. Configuration management capabilities are gaining attention for assisting

teams on large projects. TAGS has been notable for its features in this area.

Cadre recently added Model Configuration Management to Teamwork, and

DCDS also has added configuration management features. RDD provides

features to assist merging and splitting of databases.

g. User interface and graphic sophistication has improved. STATEMATE exhi- U
bits an effective color interface. RDD demonstrates a specialized user inter-

face. In its Sun implementation DCDS/Ada has improved its user interface. 5
h. Real-time system specification requires that both the logical and temporal

aspects of a system be taken into account. There is no wide agreement on the 3
effectiveness of various specification techniques for real-time requirements.

41

i. Most of the tools offer minimal compatibility among the design data produced
by each of their tool components. Despite their dependence on database

capability, only a few tools, such as TAGS and Software Through Pictures,
have a high-level query language applicable to all data. DCDS/Ada has a

single high level query language, but the language can only be applied to one

of five specification stages at a time. RDD has a report generation language
but not a query language. For many tools, design database semantics are nei-

ther extendible nor visible. This limits a designer's ability to fully exploit the

entire database to understand and validate all aspects of a designed system.

j. Many of the tools do not have an open method for bidirectional transfer of

data between themselves and other tools. Software through Pictures, DCDS,
and TAGS do have such methods for importing and exporting design data.

k. Any standard toolset chosen for SDI should provide flexibility to exploit the

strengths or innovations of different tools. This assigns a high level of impor-
tance to capabilities for transferring design data between ools.

1.5 SUMMARY REVIEWS

The remainder of the report comprises the tool summaries. The tools reviewed in
[Fife 87] are listed first, followed by the additional tools reviewed in this paper.

I

I
U
I

I

I

I
I
I
I
U
I
I

~I

6 I

I

3 APPENDIX A

3 SOFTWARE THROUGH PICTURES

3 Software through Pictures (StP) is a dataflow-oriented software engineering tool,
developed by Interactive Development Environments, San Francisco, CA [IDE 88]. This

review concerns the features of the most current version, Release 4.0. The major recent

additions to StP are: an object annotation editor, DOD-STD-2167A document templates

and a template editor for automating standardized reports, and an interface to the Inter-

leaf Technical Publishing Software.

Graphics and Editing

UStP provides graphic and text editors that take advantage of the windowing capa-

bilities of the host system and that employ static and pull-down menus, keyboard, and

3 mouse.

Design Semantics and Support

IStP supports the dataflow diagramming method with control flow and state transi-
tion diagrams or tables for extending design to the specification of real-time systems.3 Entity relationship and software module structure diagrams are included.

StP's new Object Annotation Editor (OAE) serves to associate properties and
values with any object in a diagram or with an entire diagram. The annotation informa-

tion is stored in the data dictionary. The OAE is invoked by a menu choice, followed by a

mouse pick on the desired object. OAE guides the user through the annotation entry pro-

cedure in a separate display window.

The approach is based on annotation templates provided for all types of diagram

objects. A template is a blank annotation record, set up with predefined properties and a

textual description field. Templates can be created or the predefined ones modified by a
user via a text editor. This approach supports the capture of user-specified design infor-

mation related to graphic objects.

. Annotations are organized into "note" types. An object may have many note

types. Each note type represents a set of related properties of an object. Each property
is referred to as a note item, and a free-form text item is available.

I Annotation information in the data dictionary may be extracted by the user with
the Object Management Language, Document Preparation System, or the data

I
7I

I

I

manipulation language of the Troll DBMS. U
StP does not explicitly represent design object replication, time or other quantita-

tive performance factors, or software/hardware resource allocation. Such items could be I
captured informally using the object annotation editor.

Team Design Support i
StP supports multiuser development of software systems, relying on the host

operating system's configuration management and file management facilities. For exam- I
ple, if StP is running under Unix, StP uses Unix's Source Code Control System for
configuration and version management. 3
Documentation and Output

The contents of the text and graphics files created with StP can be printed in 3
PostScript, Unix pic, or raster formats. The entire contents of the data dictionary may
also be printed. 3

StP's Document Preparation System (DPS) provides a set of DOD-STD-2167
report templates. Users can create and modify their own custom report templates via the
Documentation Definition Editor. Information in the data dictionary is inserted into the
templates for generating reports. A document browsing capability is provided for viewing
documents and for interfacing with external word processing systems. Currently, the only 3
desktop publishing system that StP specifically supports is the Interleaf Technical Publish-
ing Software. The DPS provides for mixing text and graphics. 5

StP will generate data declarations from the design description, but does not gen-
erate code. The user can key in process code as part of process specifications (P-Specs).

StP treats these as textual descriptions.

Static Diagnostics 3
Static diagnostics available in StP include diagram and decomposition checking.

These detect simple errors such as missing labels, missing decomposition connections,

unconnected objects, etc. No enhancements are evident beyond the prior IDA report.

Simulation i

No capability for design simulation or dynamic checking is provided.

I

I

I

3 Adaptability

No adaptability enhancements have been made regarding graphics, but the object
I annotation method is an important adaptability feature.

Interoperability

The Interleaf Technical Publishing System is the only package to which IDE pro-
vides explicit hooks. StP does provide data import and export facilities as part of the
DBMS. The import and export data formats are well documented. Diagrams are stored

as text, and the storage format for diagrams also is well documented.

I Traceability

There is no automatic traceability capability. Object annotations can be used forItracing specifications and design objects back to requirements.

Information Modeling Support

StP provides ERA or Jackson data structure diagramming for graphically
defining system data items, structures, and relationships. But, StP does not provide the
key features needed for information modeling or database design. For example, StP does
not support inheritance or computer-aided database normalization. StP itself is based on

I Troll, a relational database system which can be accessed separately.

Distinguishing Capabilities

5 The new object annotation feature is one of StP's most distinctive features. In
addition, StP has a well designed and easy to use user interface. The tool forces the user
to take a dataflow-oriented approach to building software systems. Likewise, the tool
requires users to build their own configuration and project management facilities, hooks
to other software products, and so on.

I
I
I
I
I
I9
I

U
I
I
U
I
I
I
I
I
I
I
£
I
U
I
U
I

10 I
I

I
3 APPENDIX B

3 TEAMWORK

3 Teamwork is a product of Cadre Technologies, Inc., Providence, Rhode Island,

and is available for Apollo, Sun, DEC VMS and ULTRIX workstations, Hewlett-

Packard workstations, IBM OS/2 and AIX, IBM PC/RT, and other machines listed in

the previous IDA report. Teamwork embodies the dataflow diagramming approach to
system design, following the conventions of Yourdon and DeMarco. It provides the Hat-3 ley conventions depicting real-time considerations. Teamwork's components are:

a. Teamwork/SA, for structured analysis;

I b. Teamwork/RT, extending SA for real-time considerations;

c. Teamwork/SD, for structured design;

d. Teamwork/IM, for database information modeling;

3 e. Teamwork/ACCESS, the database access utility;

f. Teamwork/DPI, the document production interface;

3 g. Teamwork/Menus, for tailoring or extending Teamwork menus;

h. Teamwork/Ada, a graphic editor for Ada program design;

i. Teamwork/ASB, an Ada source builder;
j . Teamwork/CSB, a C source builder.

Graphics and Editing

3 As IDA previously reported, Teamwork has an effective and easily used inter-
face, based on fixed and pull-down menus, keyboard, and mouse selection and pointing.

The graphics implementation was improved in performance during the last year, com-

pared to the version IDA used in its hands-on evaluation.

Design Semantics and Support

A significant addition to Teamwork's components is Teamwork/Ada, a graphic
editor for designing Ada program structures with the Buhr icons and object-oriented

design approach. This tool is the first stage of a long range collaboration with General
Electric Research and Development Center, by which the tools that GE developed in the3

11I
I

I

Ada Programmer's Workbench will be reimplemented as part of Teamwork. U
Team Design Support 5

Teamwork's support for project teams and other distributed efforts has been
enhanced with its Model Configuration Management (MCM) facility. MCM automati-

cally generates and tags versions of diagrams, each with its own status label to capture
the change author and history. A single command freezes and protects a project model in

its entirety as a baseline. A project manager, as "owner" can control access privileges for I
read, write, or delete access, for owner, a group, or all Teamwork users. MCM also aids

the merging of diagrams created by different individuals into one project model. Name

conflicts are automatically detected during merging, and can be resolved interactively by
one user.

Documentation and Output I
A Graphic Note feature has been added to Teamwork's Annotate facility. The

latter permits free-text notes to be attached to diagrams or objects. Now, a free-form Line

diagram also may form a note. These graphic diagrams also can be created as templates
to be copied, pasted, and tailored as elements of larger diagrams. One or more graphic 3
notes may be attached to elements within any structured analysis and design diagram, or

to an entire diagram. The collection of existing notes for a project or object is viewed

through an index. Individual notes may be chosen from the index for presentation on the
user's display screen.

An SQL report writer may be used to extract data dictionary information. I
The Teamwork Document Production Interface (DPI) provides templates for

combining diagrams and text files to serve as first-cut versions of DoD ME,-STD-2167A
documents. The output subsequently is manipulated through an external publishing

software package, such as Interleaf, Scribe, or Context. 5
Static Diagnostics

Teamwork's diagnostics are typical of dataflow diagramming tools, but with 3
added flexibility in applying them. They may be run in background mode, as well as the
foreground, online mode. Also, a user may select to apply diagnostics to a single

diagram, or to the set of diagrams decomposed from a given diagram, as well as to an
entire project collection.

12 3

I

I Simulation

wihA tool is available from Cadre which translates Teamwork data into ADAS,

which can then perform simulations.

3 Adaptability

Cadre's approach to Teamwork adaptability rests on user-written programs to
access Teamwork's database through the provided ACCESS package. This supports a
variety of user-written analysis and reporting programs, and Cadre provides documented
examples for a few major ones of interest. No changes to graphics are available, how-

ever.

Interoperability

IAs noted above, Teamwork provides its DPI output in a format for publication
software, and can interoperate on a specific file basis with external software. Cadre has

been prominent in fostering effort under the CDIF (CASE Design Interchange Format)

standard committee to develop a CASE tool interchange standard.

5 Traceability

Teamwork has a new requirements tracing tool termed Teamwork/RQT which
has not been evaluated by IDA. Teamwork/RQT was originally developed by SAIC
under the name of THOR. The Status Label on diagrams and the Annotate feature can
be used to capture some pertinent information. A general query on either would have to5 be done by a user-written search program.

Information Modeling Support

Teamwork supports the description of a system's data items and structures
through either ERA or structure diagrams. Their content is captured in Teamwork's3 database and could be queried or analyzed by user-written programs via the ACCESS
interface. No database normalization tool is provided. Further, the Teamwork database

is not user extendible and does not support general user perceptions of the system under

design, such as physical attributes or relationships among objects that are not central to
one of its various editors.

I Distinguishing Capabilities

Teamwork is a well-established dataflow diagramming tool with an easily-used

interface. It is noteworthy that extensions are being made to increase its applicability for
large defense projects. Key examples of this are the Ada tools and the Model3 Configuration Management facility.

3 13
I

I
U
I
U
I
I
I
I
U
I
U
I
I'

I
I
I

14 1

I

I

3 APPENDIX C

5 TAGS

3 TAGS (Technology for the Automated Generation of Systems) a product of
Teledyne Brown Engineering, Huntsville, Alabama. TAGS allows the user to define,
analyze, and simulate a new system design. Its underlying design methodology might be

called "Engineering Block Diagrams." TAGS provides certain diagrammatic and tabular
forms to define and decompose a system's functionality down to a modular level. At the3 lowest level, modules are represented in a flow-chart form that embodies algorithms, syn-

chronization, timing delays, etc.

3 The TAGS system is implemented for Apollo Domain workstations under the
Aegis Operating System, Sun series 3 workstation family using Unix, and the DEC Vaxs-
tation 2000 using ULTRIX. Porting also is underway to the IBM's version of Unix, the

AIX Operating System. A VHDL compiler is underway, using TAGS source descriptions
as input, and Teledyne Brown expects its completion in early 1990.

I Teledyne Brown also offers the Requirements Verification Tool Set (RVTS) pack-
age, now implemented on IBM PC compatible hardware under DOS, but being ported to3 X-Windows Version 11 and ULTRIX. RVTS may be used with TAGS as a computer aid
to capture free text requirements statements and to extract requirements based on key
word phrases selected by the user. A fully integrated RVTS/TAGS version is scheduled3 for delivery soon.

The major components of TAGS are:

a. Input/Output Requirements Language (IORL)

3 b. Diagnostic Analyzer (DA)

c. Simulation system, with the Simulation Compiler

3 d. Automated Configuration Management (CM)

e. Executable Ada Code Generator (ECG)

f. Requirements Validation Tool Suite (RVTS)

3 Graphics and Editing

No significant change to the TAGS graphic interface has occurred in its recent3 enhancements. The Sun version is a close replica of the look and feel of the earlier

15

I

I

Apollo implementation. All TAGS versions are intended to have identical menus and I
icons, but some augmentation may take advantage of particular host features. For exam-
ple, the Sun version already uses X-Windows and may be considered somewhat more user
friendly than the Apollo version.

Design Semantics and Support 3
TAGS, as noted in the prior IDA evaluation, provides capability to specify sys-

tems in depth, using its various tables and diagrams. This depth is the basis for automatic
Ada code generation, which is now available for simulation, prototype, or limited pro-
duction purposes. The Ada source code may be compiled by the DEC, Alsys, or Verdix
Ada compilers (or, presumably, any validated MIL-STD-1815 compiler) for any of their I
target environments. Teledyne Brown considers the source code to be of production qual-
ity, suitable for direct incorporation in operational code, but IDA did not evaluate this 3
claim.

Team Design Support 3
The tool supports integrated work by multiple analysts/work-stations on a local

area network, as explained in IDA's previous evaluation. No changes in this capability
have occurred.

The Configuration Management (CM) package provides a set of features for
tracking a system design database. With it, a user may catalog Engineering Change Pro-
posals (ECP) and retain a historical record, including approved ones as Specification
Change Notices (SCN). Version identification is available, and time-date stamping is 3
used by the diagnostic analyzer. The prior IDA report has a complete summary; no
enhancements have been released in the past year. 3
Documentation and Output

TAGS can produce Postscript formatted pages, which can then be read into 3
external tools that accept Postscript files. Predefined interfaces are available to Interleaf
and Mentor Graphic's Context publishing software.

Static Diagnostics

The TAGS Diagnostic Analyzer (DA) performs automatic checkout and valida-
tion of a design as described in IDA's earlier report. Once a design is validated, execut-
able Ada code may be generated for a target environment, as stated above, by the Exe-
cutable Ada Code Generator ECG).

16 3
I

I

I Simulation

The simulation compiler (SC) produces an executable system model as an Ada

program. During this step, some further static errors may be found. There are two ways
of generating and running a simulation. In both, a statically correct TAGS definition is
input to the simulation compiler and some part or the whole system selected for simula-
tion. This step is done on the DEC, SUN, or Apollo workstation on which the definition
was created. The SC output code is then handled by one of two alternatives:

a. The SC output Ada code is exported to a VAX VMS system and compiled

with the VAX Ada compiler in conjunction with the TAGS simulation library

and executive resident on VAX. The executable simulation is run on the
VAX.

b. The Apollo workstation's Alsys or Verdix Ada compiler compiles the SC out-
put, which is run on the Apollo workstation with the TAGS simulation execu-3 tive and library.

In both cases, the simulation runs with the input conditions specified in the TAGS
I definition of the system. Thus, the input may be special simulation input files defined as

input to a Schematic Block Diagram (SBD); alternatively, the input may be values
defined in a Predefined Process Diagram (PPD) appearing as the final decomposition of

some SBD.

Adaptability

TAGS adaptability features remain unchanged since the last report.

UInteroperability

Library routines can be accessed with user-defined C and FORTRAN programs

to import data from and export data to the TAGS database.

U Traceability

3 The RVTS requirements list uniquely numbers the requirements and is stored in a
relational database as the foundation for traceability and verification/validation or test-
ing. Connecting numbers may be transferred manually onto TAGS design diagrams.

I1 17

U

I
I

Information Modeling Support

Although the user can specify input and output record formats, there is no I
specific capability to model the information for database or other purposes. I
Distinguishing Capabilities

TAGS is well engineered and continues to evolve towards capturing as much as I
practical of the system and software engineering process. TAGS facilitates the definition
and simulation of a system as well as automatic code generation for target machines.
Teledyne Brown states that they are working on a VHDL generation capability for pro-
ducing VHSIC design:, consequently achieving an integrated hardware and software

design system. Configuration management and traceability tools already are available, I
and being improved in new versions.

I
I
I
I
I
I
I
I
I
I

18 I
I

I
* APPENDIX D

3 AUTO-G

3 Auto-G, a toolset developed by Advanced System Architectures (ASA, of the

United Kingdom, was highlighted in the previous IDA report [Fife 87] for the scope and
rigor of its graphical specification approach. ASA is now a wholly owned subsidiary of

RJO Enterprises, Inc, which is based in Lanham, Maryland. Auto-G is hosted on Sun
workstations, VAX systems via conventional terminals, DEC Vaxstation 2000/3100
workstations, Apollo workstations, and Atar. t ersonal computers. Aside from its spe-

cialized utility programs, such as plot generators, the toolset has these major com-

ponents:

Component Capability3 Auto-G comprised of the graphic editor and underly-

ing database
Sema the semantic analyzer or diagnostic facility

Sadmt the translator from specification language to
SADMT

Dbutil design file manager

T-print translates from the graphical (G) to 'extual
(T) representation

T-parse translates from the textual (T) to graphical

(G) representation

I Graphics and Editing

The Auto-G toolset incorporates the G graphical specification language and an
equivalent textual language, T. Its menu, keyboard, and mouse interface is easily used,

as IDA reported earlier. Its pick-and-drag panning remains an annoyance that is some-
times important because of the size of the "tree" comprising a G system description. This

annoyance is somewhat alleviated through the use of the "Locate World View" command
which allows any point in a design to be accessed by highlighting the desired point.

Design Semantics and Support

SG specification capabilities apparently are complete regarding logical behavior

and performance aspects essential to SDI. For example, a recent ASA application of3 Auto-G demonstrated a fully defined sensor data fusion architecture for SDI. The

19I
I

I
specification approach proceeds from identification of concurrent processes and their I
interactions through interchanged messages. A process can be specified in enough
mathematical and parametric detail to automatically generate compilable code
representing its operation. Code generation has been demonstrated by ASA for SADMT
(version 1.5), Ada, and C. Replication of processes, data structures, arithmetic process-

ing, procedure calls, addressed message passing, and elapsed time or time constraints are i
among the aspects covered by G. However, physical components or allocation of
resources to logical operations are not explicitly representable. Depending on their exact

nature, they may or may not be representable indirectly or implicitly.

Team Design Support 3
ASA has added a capability to access logical Auto-G directories so that users can

access design databases in other paths. Auto-G currently operates with Change

Configuration Control (CCC) to provide software configuration management. Support- I
ing the tasks involved here depends on operating system support for file access and time-
date stamping. Auto-G's extensive versioning and view capabilities are helpful.

Documentation and Output

No change in capability here has been reported. Plotting distinct views is the pri- I
mary way of getti'ng hard copy for the G specification. ASA has indicated that it is
currently implementing automatic generation of required documentation. 3
Static Diagnostics

Auto-G has a unique and effective technique of placing diagnostic messages on I
the G graph where each error applies. Diagnostic capability is extensive, commensurate
with the specification depth that G provides. The prior IDA report [Fife 87] provides

more information. No change in this capability has occurred.

Simulation

ASA has enhanced Auto-G's automatic SADMT generator for consistency with
the IDA-released version 1.5 and the accompanying SDI Simulation Framework [Cohen

87].

Adaptability

No enhancements have occurred; see prior IDA report [Fife 87].

I
I

I

I

3 Interoperability

Auto-G can be complemented in limited ways by other Unix-based tools which
will deal with files irrespective of their content, such as the Source Code Control System.
No major tools other than those from ASA have been closely integrated with it. Design
information can be imported or exported in the form of ASCII coded, T language state-
ments.

3 Traceability

Auto-G has no feature explicitly aimed at the traceability requirement. Exten-
sive comments can be placed on a specification diagram, and specific instances located
later by a query and highlighting technique.

Information Modeling Support

All data item or structure definitions can be dumped to a file for external process-
ing, and a basic query function permits locating instances on the G diagram through a
highlighting technique. The specification language covers all data type characteristics
conventionally found in programming languages, including templates and replication. It3 has no high level, predefined representation for database access, nor a general dictionary
facility for textually describing the meaning or semantics of data. A new data dictionary
program called Datadic is expected soon to provide a selective data dictionary query

facility.

Distinguishing Capabilities

Auto-G is especially noteworthy for the rigor and completeness of its
specification capability, and the extent of its development toward automatic code genera-
tion. It is the only CASE tool which provides automated support of SADMT for SDI
simulation needs. Its user interface is easy to learn and use, and reflects up-to-date tech-
niques except in scrolling or panning. It is primarily limited by its lack of supplementary
features for large project applications, such as documentation and configuration manage-
ment support.

I
I
I

21I
I

U
I
I
I
I
I
I
I
I
I
I
I
I
U
I
I
I

22 I
U

I
I

APPENDIX E

I DCDS

DCDS/Ada is a tool developed by TRW in Huntsville, Alabama, under contract

with the U.S. Army Strategic Defense Command (USASDC). All rights to DCDS/Ada
software and documentation are owned by the U.S. Government. DCDS/Ada is distri-
buted by direction of the USASDC in Huntsville, Alabama, is subject to export restric-
tions, and may not be further distributed to any domestic or foreign institution, organiza-
tion, or individual. DCDS/Ada has behind it many years of development and use on
defense projects, dating back to the original 1973 SREM research.

DCDS/Ada release 4.4 is currently available for VAX/VMS platforms.
DCDS/Ada release 4.3 is available for the Sun workstations. The IBM-AT has been
dropped as a supported platform for DCDS.

DCDS/Ada release 4.0 was released in October 1988. This was a major release
which added improved hierarchy capabilities, simulation for RSL (the software require-
ments analysis language), a stand-alone abbreviated simulation tool, automated
configuration management within DCDS, automated document control, limited support
for the spiral model methodology, and support for the SDI System Description Language
(SDL).

Graphic and Editing

The Sun version of DCDS has a greatly improved user interface and graphics
editing capability over the version evaluated by IDA in 1987. The Sun version of DCDS
takes advantage of the Sun's mouse, windowing, and graphical capabilities. Some opera-
tions, such as entering a line of text in Browse, overuse the windowing capabilities, slow-
ing user entry. Data flow between functions on F..nets is still not visible.

3 Design Semantics and Support

DCDS/Ada embodies five different design methods with a corresponding3 language for each method:

I
I
* 23

I

I

Method Language Purpose of Method I
SYSREM SSL System Requirements Engineering Method for defining

systems and their behavior.

SREM RSL Software Requirements Engineering Method for defining

the requirements of software.
DDM DDL Distributed Design Method for defining architectures

consisting of hardware and software.

MDM MDL Module Development Method for defining units of program code.

TSM TSL Test Support Method for testing. I
Each language consists of an Entity-Relationship-Attribute (ERA) database U

schema with various constraints. Constraints on the schema are checked using the DCDS
Query facility and check files which have been developed by TRW.

DCDS/Ada provides for timing specifications via "validation points" in RSL, as
well as providing for the textual attribute "performance-index" in SSL. The notations

embedded in DCDS/Ada can describe hardware components as well as software com-
ponents and the describe the allocation of software to hardware. DCDS/Ada can for-
mally describe process behavior, including concurrent and replicated behavior. 3
Team Design Support

DCDS/Ada allows for multiple designs to be included in the database, each of i
which is called a "configuration". There is no support for automatic splitting and recom-
bining of the database, nor for sharing the database between multiple simultaneous users.

DCDS still has difficulties if a user decides to make a change in a language previ-

ous to the current language - all information that was added to a later design language is

lost when moving data. Each DCDS language has its own separate database. Each tran-
sition to the next phase of design requires that a translation program be run which creates

the next phase's database with some entities from the previous phase's database. A I
change in a previous phase's database requires a re-translation into the database of the

next phase, erasing all of the added information in the following database. For example,

if the user decides to add information to SSL, which is used to describe system behavior,

after entering data to RSL, which is used to describe software, all data in the current RSL

database will be lost when the SSL data is transferred to an RSL database. This transi- I
tion can be done manually to avoid this problem, but with difficulty, thus creating the
potential for masking subtle errors. This is a serious deficiency for use in large scale sys-

tems.

I
24

I

I

I Documentation and Output

The DCDS documentation has improved over previous versions but is somewhat
dated. Most of the documentation currently available is dated October 1987. The
Methodology Guide Appendices (CDRL A008) omit the comments on each entity, rela-
tionship, attribute, and qualifier. These comments are necessary for complete under-
standing of the schema. These comments are available on-line.

DCDS/Ada has an automated document generation capability for creating text

files for four of the DoD-STD-2167A documentation types. These are the SSS (System
Segment Spec), SSDD (System Segment Design Document), SRS (Software Requirement
Specification), and SDD (Software Design Document). Graphics cannot be included in
the output document, and the output is insufficiently formatted that the resulting text file
will need to be edited before it can be printed.

The "report" command was added to the Query language in DCDS version 4.0.
This command may be used for report generation. Report uses a template to generate
information about various objects; these templates may be developed on the VAX using a
template generation tool but must currently be created manually on the Sun. Templates
created on the Vax may be used by the Sun version of DCDS.

Static Diagnostics

DCDS/Ada contains a large set of static diagnostic tests. New static diagnostics
can be easily added or standard ones modified since all static tests are stored as ASCII
files which are sent to the Query facility. The Query facility has been improved by adding
constructs for searching hierarchies, partial hierarchy listings, and creating sets using
hierarchy definitions. The flexibility of the output display has been improved by adding

the MAP, FULLAAP and GROUP options to Query.

Simulation

The first two languages, SSL and RSL, have simulators available. There is also a

stand-alone Abbreviated Simulation Tool (AST) for building and executing small simula-
tions. There are no tools for dynamic validation nor for generating a self-standing simula-
tion program.

I Adaptability

The underlying ERA database system is very flexible. The tool supports
modifications to existing schemas and the construction of a new ERA database schema.
Queries and reports may be generated with the new schema. The graphical editors may

not be adapted.

*25

I

Interoperability

DCDS has been augmented to produce SDL diagrams. It is unclear if these 3
diagrams could be fed into other CASE tools which support SDL. All data may be
moved in and out of DCDS as text files.

Traceability I
DCDS/Ada provides complete traceability back to the system requirements.

DCDS/Ada can record decisions made, who made those decisions and when these deci-

sions were made. DCDS databases cannot directly trace to other databases, so copies of
the entities of other databases are included in the current database for this traceability to I
be available. Allocations of one object to another can be represented.

Information Modeling Support

DCDS/Ada is based on five separate ERA database schemas which are com-
pletely visible. Entities, relations, attributes, qualifiers (attributes on relationships), 3
synonyms, and reverse relationships are all visible and modifiable by the user. The
schema definitions can be queried on-line. Inheritance is not supported. 3
Distinguishing Capabilities

The design schema of the ERA database and its checking facilities are especially 3
easy to modify.

I
I
I
I
I
I
I

26 3
I

I

APPENDIX F

* RDD

RDD-100 (Requirements Driven Development) System Designer, called RDD-

100 in this paper, is a computer-aided systems engineering (CASE) tool developed by
Ascent Logic Corporation, San Jose, California. RDD-100's concepts are based upon

the first of the five stages of the Distributed Computing Design System, DCDS. Thus
RDD-100 supports the System Requirements Engineering Method (SYSREM) and its

System Specification Language (SSL). RDD-100 differs from the current implementation

of DCDS's SYSREM support in that it has an improved user interface, including a supe-
rior graphical interface. RDD executes on a Sun/3, Sun/4, Apollo DN-3000 or 4000, or

Apple Macintosh II, and requires 8 Mbytes of RAM on any of those platforms. Ascent
Logic plans to produce a series of products which use concepts similar to DCDS; this
expected series of products will be referred to as the RDD family, differentiating this
series from the currently available tool, RDD-100.

Graphics and Editing

RDD-100 is, in general, significantly easier to use than DCDS. Editing is easier
to perform, and the product takes advantage of the windowing environment. Text can be
cut or copied from one window and pasted into another. The graphical editor has a rela-
tively quick response.

One of the more striking aspects of RDD-100's graphical editor is its "expand in
place" function. This allows the user to see decompositions of a function in the place of

the function as well as the higher-level functions simultaneously. This view of multiple
levels of decomposition may also be printed on a Postscript-supporting printer. Expand-
ing in place is a solution to the problem of many tools' not being able to display both the

higher and lower levels of details simultaneously.

The graphical editor also has the ability to turn on and off some of the display

aspects of function networks (F_.nets), thus reducing visual clutter. The editor can turn on
and off the display of items (data structures) or item flow, thus making it possible to see
the functions and their order of execution without having to see the data flows accom-

panying the functions.

The graphical editor automatically lays out item flow but cannot, unfortunately,
do so in a "pretty" fashion. Item flows are drawn as a straight line from an item to a func-
tion no matter where the function is, and the results may be misleading since any function

27

I

I

that is between the item and the function may appear to be connected. The tool does I
allow a user to improve the legibility of the Fnets by moving functions down from where
they would normally be drawn. This moving of functions is accomplished by editing a text
field of the functions in an F.net. These modifications to improve the legibility of the
F.nets are somewhat clumsy; it would be better if the tool allowed the user to move a

function directly with the mouse, and better still if the tool automatically laid out the I
F.net.

Design Semantics and Support

RDD-100 has essentially the same specification depth as SSL in DCDS. RDD- I
100 is concerned with system level design, with information as to the ordering of functions
and allocation of functions to components (subsystems). As in DCDS SSL function

behavior can be represented using the constructs of sequential, alternated, iterative, con-
current, or replicated execution.

Although RDD-100 has a number of constructs that can completely specify order I
of function, it is somewhat weak in specifying time of performance, as is required in real-
time systems. Aggregate data structures, called "TimeItems," show the arrival rate of 3
input or output, and aggregate functions, called "TimeFunctions," can specify fixed times
of execution (for example, once every five seconds.) RDD-100 TimeFunctions also have

an attribute "Performance Index" which may be used to describe timing characteristics of
a system, including specifying maximum allowable time for performing a process in a
real-time system. While a maximum time may be entered in a performance index, the
timing requirement is not processed by the tool, and is not currently used for scheduling or

other types of analysis.

RDD-100 is not meant to handle software design, but rather the higher level sys-
tem design. Ascent Logic plans to later release a product for software design. The only

concept RDD-100 has for describing hardware or software is the entity "component," I
which might be hardware, software, or even a contractor, but is most likely a subsystem.
Thus the tool is designed to allocate functions to subsystems.

Team Design Support

RDD-100 has extensive support for splitting a design database into smaller data-
bases and for recombining these databases under various conditions and user control. 3
ThVere is no support for sharing a database on-line between multiple simultaneous users.

This is because the tool loads the entire database into memory before the database can be

28
I

I

used. Ascent Logic states that on-line database sharing will eventually be provided by

products under development. Alternative designs may be stored in RDD-100.U
Documentation and Output

The tool documentation is indexed and includes many sample diagrams. The

materials are essentially reference material with brief introductions to the methods of

RDD; the manuals do not include detailed descriptions of the methods and techniques

supported by RDD, but instead suggest that the users first enroll in a training course by

Ascent Logic.

I A number of standard reports, such as those required by MIL-STD-2167A and

MIL-STD-490, are included in the package. These reports may be modified for a particu-

lar type of user report. The report generator can generate graphs of F_.nets and I-nets of

varying detail with a PostScript printer and include them in a report. RDD-100 uses a

report language similar to F.nets. This reduces the learning time for creating new reports

as opposed to learning another language. A user must create or modify a program to pro-

duce a different type of report.

I Ascent Logic provides software for generating IDEF-0, N2, and user definable

hierarchy charts from the database.

I Static Diagnostics

RDD-100 has a number of built-in checking phases which cannot be altered by the

user. The report generator may be used to create additional diagnostics, but these reports

will be produced at a much slower rate. The report generator can be used to create,

modify, and delete elements.

Simulation

RDD-100 has no self-standing simulation program, but a user may transfer an

SSL design to DCDS and use its simulation program. Ascent Logic is working on a simu-
lation facility which it calls the Dynamic Validation Facility (DVF).

Adaptability

RDD includes an extension capability which allows users to add entities, relation-

ships, and attributes to the existing schema and to even create new schemas. Changing

the tool's graphic symbols, their semantics, or the built-in checking phases of the tool is

not possible. Reports are easily changed and new ones are relatively easy to create once

the user understands the report generation language.

I
| 29

I

I

Interoperability I
Data from RDD-100 may be transferred to DCDS with a translation routine,

though such a routine is not included with the tool. This allows systems described using I
RDD-100 to be simulated using DCDS's SSL simulation program.

Traceability I
RDD-100 provides complete traceability back to system requirements in the origi-

nal system specification documents, the decisions that were made, and the engineer who
specified the information. RDD-100 can also specify the allocation of components (gen-
erally subsystems) to system functions.

Information Modeling Support

RDD-100 and DCDS have a very similar conceptual model which forms a system
design information model with predetermined entity types, attributes, and named rela-
tionships. The underlying model partially supports inheritance. Inheritance of attributes
and relationships is supported by the ERA extender of the tool, but relationships are not
allowed to abstract (ancestor) entities and these abstract entities are not visible outside of
the extender. Every system entity has a "traced from" relationship to describe the source
of system information. This model is available as two charts, a schema chart and an
attribute chart, which are included in the reference guide. The entities are also listed on a
menu of the editor, and the relations are visible when expanding each entity. Thus this I
model is clearly visible to the user. RDD-100's extension capability, when available, will
allow users to add to the model for important systems aspects of their particular type of
system.

Distinguishing Capabilities

RDD-100's graphical interface is easier to use than DCDS. Its report generation
capabilities are superior to DCDS and includes IDEFO graph generation. The RDD-100
schema only represents the first of the five stages of DCDS. Like DCDS, RDD-100's F-
nets show both functions and behavior on the same graph. RDD-100 can show allocation
of components (hardware or software) to system functions and can record traceability I
back to system requirements in the original system specification documents. Since RDD-
100 only covers the first stage of DCDS, it does not cover software design or software to
hardware allocation. A system designer using RDD-100 must switch eventually to a
software design tool. One option is to switch to DCDS for areas RDD-100 does not Icover, since DCDS and RDD are very similar semantically.

I
30!

I

U Ascent currently intends that its products will not be split into multiple databases
as the DCDS databases are currently implemented. The multiple databases of DCDS

make it difficult to keep data consistent. DCDS users need to use ad hoc data recovery
methods after a change in a higher-level database because any change to information in a

previous database causes all information in subsequent databases to be lost. Since these

future phases of RDD are not yet available, it is unclear if RDD will be able to success-
fully avoid this problem. Current users of RDD who switch to DCDS for the remain por-

tion of a system design proces will still be troubled by this difficulty.

3
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

32 I
I

I

* APPENDIX G

STATEMATE

STATEMATE consists of a set of modules developed by i-Logix of Burlington,

Mass. Its underlying design methodology has been presented in several published papers

in the open computing literature [Harel 87, Harel 88, Harel 90]. STATEMATE provides

a dataflow diagram (called an Activity Chart), and behavioral specification through a

state transition diagram (called a State Chart). Both diagrams may be decomposed. Phy-

Isical allocation of software to hardware is also definable through one or more Module

Charts. Activity and State Charts allow specification of concurrent processes. State

Charts are connected to Activity Charts through control flows specified on the dataflow

diagrams, and define activations of the processing steps shown on the Activity Chart.

State Chart decomposition establishes a more practicz.l basis for using state transition3 specifications for complex systems.

The STATEMATE system incorporates the InterBase 2.0 (or higher) DBMS with

its delivered package. It is implemented for three platforms: Sun series 3, with SunOS

3.4 and NeWS 1.1 software; DEC VAXstation GPX or 2000, and MicroVMS and UIS

software; Apollo Series 3000 or 4000, with Agis, Domain IX, and GMR graphics

software. The next release of STATEMATE will b'ipport the ULTRIX and VMS operat-
ing systems, DEC Windows, X-Windows, and RISC-based Sun and DEC workstations.

3 X-Windows

STATEMATE has four major and separately purchasable components:

I a. Kernel, containing the three graphic editors;

b. Documenter, providing customized output, e.g., for MIL-STD-2167A;

c. Analyzer, producing a visual simulation of the system; and

d. Prototyper, producing Ada code to run on a target machine.

Graphics and Editing (Ease of use)

3 The use of graphics and the tailorability of the medium are excellent. As an

example, a color may be used to identify a mechanism or concept and may be changed

easily to a different color. The windows and pull down menus form an effective user inter-

face, and the commands are relatively easy to learn. However, the symbols (icons) are

all rectangles with certain differences, but a very similar appearance. A non-color

3
I 33

I

I

terminal may prove difficult to use due to the lack of shape distinction of the different I
icons.
Design Semantics and Support (Specification Depth) I

State Charts are an extension of state transition diagrams which add concurrency

and hierarchical decomposition.

The approach of defining processes by dataflow and State Charts is clear and

effective. The system allows formal definition of sequential, iterative, replicated, or con-
current processing. Specification of iteration, though possible, is difficult to implement,

requiring individual states for each iteration. Replication of elements (in the sense of an 3
index on a logical or physical object) is not yet available, though the vendor states that
the company is working on adding this feature. Timing is specifiable, in the sense that it is

possible to restrict the flows in parallel (as in the Ada rendezvous) but the overall time I
cannot be constrained (i.e., any overall timing constraint is only observable or checked at

the simulation level). Dynamic allocation of a particular function to specific hardware
(during a special phase of the processing) is not possible. It is not possible, from the func-

tional charts, to see what hardware is to run which functions, though the Module Charts

have this information.

Team Design Support

STATEMATE provides for multi-user design of systems. Each user's work is

maintained in a local work environment. When a design is baselined, the design data is

written to the databank, which is a common area (i.e., central database). Design data is i
stored in ASCII document form !a the databank. STATEMATE performs logging as well

as versioning of files.

In order to work with large designs, users can move in and out of editors as they

move through various parts or decompositions of the system under design. A tool is also

provided to facilitate the accessing of graphical representations.

Documentation and Output

Design data and other informatioq contained in the STATEMATE database can

be output on printers or plotters. STATEMATE's Graphic Kernel is a query mechanism
for retrieving designs, documentation, and other information from the STATEMATE
database. This feature can be used in conjunction with the MIL-STD-2167A documenta-
tion template to automatically generate MIL-STD-2167A documentation. Reports may 3
be generated and the format stored for about 12 different forms for future use. The user
can also define templates for report generation. STATEMATE supports Postscript, troff,

341

I

and nroff formats. In addtion, the databank stores all design data as readable ASCII

text. STATEMATE's DATAPORT consists of a set of C routines that the user can use to

build a translator to import and export ASCII data from the database. Built-in interfaces

exist for publishing tools such as Interleaf and FrameMaker.

IStatic Diagnostics

Basic testing includes validating flows, detecting orphan activity, and checking

completeness of activities. The function/module allocation can also be checked for com-

pleteness.

5Simulation
The Analyzer may be used to initiate a simulation of a design. It first checks the

reachability of all states, then checks for deadlocks. The simulator also helps to detect

race conditions. Unused transactions and non-deterministic behavior are detected and
flagged. Simulation is somewhat coarse relative to hardware resources, since it addresses

I only the activation or deactivation of machines at any instant. Although a demonstration
to IDA showed simulation with the dataflow and state transition diagrams visible, large
problems may not be sufficiently decomposable to permit both diagrams to be visible dur-

ing simulation.

STATEMATE generates Ada and C code. Ada language generation interfaces

can include graphic panel routines for special outputs. The Ada and C code that is
automatically generated is fully compilable. I-Logix is currently extending its tool to pro-

vide generation of VHDL.

Adaptability

I The system does not allow tailoring of its icons, nor direct access or change to the
underlying database (e.g., the schema cannot be augmented by the user). The schema

and file details can be obtained under special license. Library functions can then be

accessed.

I lnteroperability

All diagrams in the file may be dumped into an ASCII form for retention or

I transfer.

Traceability

3 STATEMATE supports traceability between design elements and STATEMATE
forms. Forms can be either formal textual information (i.e., requirements or other infor-

I mation stated in mathematics or logic notation), non-formal notation (e.g., free text), or

3 35

I

I

attribute fields. If free text is used, the user must specify where the text resides by enter- I
ing the directory path. Attribute fields can be used to define a classification system which

can then be used along with STATEMATE's query facility to trace requirements and I
other information to design elements. Elements may be annotated for traceability, but

thce "s no current p!an to link these comments with other software or tools. a
Information Modeling

Textual data definition forms are the means of describing a system's data items

and structures. No graphical data structuring tool, such as an Entity, Relation, Attribute

diagrammer, is incorporated. There is no specific capability to model information for

database design or other purposes. STATEMATE does have a query and reporting capa-

bility of its data.

Distinguishing Capabilities I
Distinctive features of STATEMATE are its State Charts, Ada code generation,

and animating simulation of the defined system. State Charts extend state transition

diagrams to add concurrency and hierarchical decomposition. STATEMATE's

specification of events, conditions, and actions allows timeouts and dependency on other

states to be expressed.

3I
I
I
I
I
I
I

36

I

I

I APPENDIX H

I REFINE

Refine is a product from Reasoning Systems, Inc., of Palo Alto, California.
Refine includes four major sections:

a. A very high-level, wide-spectrum, executable specification language;

b. An object-oriented database for specification objects and documents;

c. Tools for generating Common LISP code from specifications; and

d. Tools for customizing Refine for maintaining and re-engineering existing

3 software.

The specification language may be considered very high-level because it includes3 declarative, set-theoretic and first order logic language constructs such ar sets, mappings,
and quantifiers. The specification language may also be considered wide-spectrum

because low-level constructs written in Common LISP can be freely intermixed in the3specification text and because a variety of programming paradigms, including pro-

cedural, object-oriented, and transformational programming are supported.

3 Refine runs on Sun-3, Sun4, and Sun SPARC workstations, Hewlett-Packard
Series 300 workstations, Texas Instruments Explorer and Micro-Explorer, and the Sym-3 bolics workstation.

Graphics and Editing

1 Refine runs under the Xl Window system but all its specifications are entered
textually. GNU Emacs, a common reconfigurable text editor, may be used to enter Refine
specifications. Refine includes a menu-based knowledge base browser called BROWSE

which displays an object and allows the user to traverse across the database to see the
attributes of an object and its relationships to other' objects. Refine also includes a
menu-based knowledge base editor called EDIT-OBJECT that is similar to BROWSE

but which allows the user to edit an object's properties. Online help is available.

Reasoning Systems has implemented a toolkit, called the User Interface Toolkit,
for creating interactive graphics tools. This has been used, for example, to create tools
which accept state transition diagram specifications for communication protocols, and
tools which graph the structure and dataflow properties of C, COBOL, and JCL

U37

!

software. This tool was not available at the time of the review but is now available in I
Refine 3.0. With this tool the user can assign arbitrary meanings to icons, associate icons
with particular object classes, and create relationships by linking objects together.
Diagrams entered by the user have a corresponding textual description generated

automatically.

Design Semantics and Support

It is difficult to evaluate the design semantics for this product. If viewed and used
as a programming language, Refine does not directly support software to hardware allo-
cation, concurrency or replication. Maximum timing might be specified using a LISP con-
struct. Refine does not support concurrent or replicated execution directly, although 3
many of its high-level constructs do not express order and a different compiler could
perhaps implement some of the constructs as concurrent or replicated processes. If

extended by the user and used as a knowledge base with a specification language, such
concepts as timing, allocation, and concurrent execution could be represented in the

knowledge base, but these concepts are not built into the basic Refine system.

A different approach for using the product is as a basis for creating application-
specific objects or languages which could then be used to design a system for that applica-
tion. The application-specific information could include specialized languages, object
classes, and tests. This application-specific information and knowledge base could

include information about timing, allocation, concurrency and replication, and could
specify meaningful communications primitives for the application.

Team Design Support

The Refine knowledge base has a facility called a "context mechanism", which 5
allows competing designs to be generated and analyzed. This facility also makes it possi-

ble to save the state of a knowledge base and to later restore the knowledge base to its

previous state. The knowledge base has a facility called the Persistent Knowledge Base I
(PKB) which allows the user to designate an area of the knowledge base that can be
saved and shared by other users. Simultaneous users are allowed to access this shared
knowledge base, and are warned but not prevented from accessing the information simul-
taneously. If both users change the knowledge base there will be two versions which are

branches of the original knowledge base; unfortunately, there is no merging facility for I
recombining the two versions of the knowledge base.

3
I

38 1

I

U

I Documentation and Output

The documentation does not have separate tutorial and reference sections, but is
indexed, ordered by information category, and includes many examples. Standard
reports such as MIL-STD-2167A are not included. The knowledge base may be queried3 and request for objects to display themselves in a meaningful way but there is no special-
ized report generator tool to make report generation easier. Reports may be generated by
creating them in the Refine specification language. Refine can generate Common LISP
code which can then be ported and compiled. Reasoning Systems is also working on a
project to generate C code from the Refine specification language. Applications which3 utilize the knowledge base but do not require rerunning the compiler may be executed
without Refine but with a runtime support package called RERUN. Applications which
require the specification compiler to execute require the full Refine package. For exam-
ple, an application which is a specialized CASE tool for a specific problem domain which
accepts user diagrams, generates Refine specifications, and then creates the Common1 LISP code from the specifications would require the full Refine package. The resulting
code from this application could be compiled by a Common LISP compiler and run
without Refine or Rerun.

Static Diagnostics

The Refine specification language compiler checks for syntax violations, as does
the syntax checker of the program transformation tools for interactive use of both the
Refine specification language and for other languages. The specification language com-
piler also warns of dead code. Static diagnostics that can be expressed as rules and pat-
terns could be easily created using the Refine specification language. For communication
protocols Reasoning Systems has implemented tests for deadlock, livelock, unreachable,
and unused states.

1 Simulation

Refine generates Common Lisp code which can be executed and/or ported to
other machines. Assertions can be included using the specification language which are

then tested at execution time.

5 Adaptability

The Refine object-oriented knowledge base is extensible, as are the syntactical
transformation tools. The User Interface Toolkit allows the user to adapt semantic mean-

ing to graphical icons. Refine contains tools to adapt its database to capture, analyze and
transform software written in other languages. Users have used Refine to handle5 software written in Ada, C, COBOL, FORTRAN, and other languages.

U 39

I

I
I

Interoperability

Refine is currently being used by various users as a back end for other CASE 3
tools. Various users have translated Software through Pictures data, statecharts, and
Petri nets into Refine and then used Refine to produce code.

Traceability

The Refine object-oriented knowledge base contains information about relations I
between requirements, specifications, programs, documentation, test suites and test
results. The tool can propagate automatically information from some objects to another.
Information is stored in the knowledge base regarding who performed what operations on I
what objects. This information can be queried. While there is no built-in 'reason for
decision' object, an object schema for storing decisions and the reason for making those
decisions could be created in a matter of minutes.

Information Modeling Support 3
The Refine knowledge base is object-oriented, and the information model is com-

pletely visible. The knowledge base is based on three central concepts: object classes, 3
objects, and attributes. Attributes may be used as maps to other objects, thus becoming
relationships. Reverse relationships, called "functional converses," are directly sup-
ported by the knowledge base. Attributes may be defined to be computed on demand. a
Single inheritance is supported. Querying can be performed on the schema as well as on
the instances using the Refine specification language. Object name synonyms, relation-
ships on relationships, and attributes are supported. Refine does not include multiple
inheritance nor a built-in natural language query language. A natural language query
language could be created using the parser generation system.

Distinguishing Capabilities

The Refine specification language is unusual in scope, and sets Refine apart from I
other tools. Its intent is to provide a very high level, mathematically formulated
specification language which can be translated into a common computer language. The I
language includes some first-order constructs of predicate calculus such as for-all (V),
there-exists (3), implies (--.), and Horn clauses, the latter as rules. It includes set
theoretic data types such as sets, mappings, and sequences, an extended one-way I
unification and pattern instantiation facility, rules, and constraints. For object-oriented
programming it includes object data types with specialization and inheritance. The 3
specification language also includes standard structured programming constructs such as
"if" and "while". The language is strongly typed and can directly include Common LISP

programs. Refine's specification language can use standard infix mathematical notation

401

I

3 unlike some other computer languages which can reference LISP.

One construct of particular interest in the Refine specification language is thef 'transform' construct. This allows the user to specify certain kinds of state transforma-

tions by specifying the pre-condition and post-condition of the transform. The sequence

of actions to actually produce this transform is then determined by the Refine compiler.

The compiler can determine which conjuncts in the antecedent are enumerated and which

are tested, the nesting order of enumerations, and the order and manner conjuncts are

3 made true.

Another unusual aspect of Refine is its integrated object-oriented knowledge

I base. The knowledge base models objects and relationships and makes it easy to add

application-specific objects and object classes. This object base is used for storing

software and software-related objects (such as documentation, test cases, bug reports,

and so on). As mentioned in the information modeling section, the knowledge base is

based on three central concepts: object classes, objects, and attributes. Attributes may

be used as maps to other objects, thus becoming relationships. Reverse relationships,

called "functional converses", are directly supported by the knowledge base. Attributes

may be defined to be computed on demand. Single inheritance is supported.

I
U
I
I
U
I

I
41I

I

I
I
I
I
I
I
I
I
I
I
U
I
I
I
I
I
£

42 1
I

I

I APPENDIX I

5 SPECTRUM

Spectrum is a system under development by Software AE, Rossyin, VA. It is
hosted on Sun workstations. It provides an information modeling or knowledge-based

approach to design specification, and automatic generation of prototype code to imple-

ment the specified application. Under contractual support, it has been used in prototyp-
ing an Acquisition Manager's Assistant for naval weapon system acquisitions.

I Graphics and Editing

Spectrum is used with a predefined set of windows which address various ele-

ments of its conceptual model and operation. Specifications are rendered as text entries,
not by graphic icons. Particular windows become available at different levels of a3 specification tree that guides a designer in fulfilling specification requirements. Pull down
menus are available to make selections or inquiries pertinent to the subject of a window.

3 Design Semantics and Support

Spectrum provides a semantic data model as a design schema. "Ihi is broken3 into two distinct parts, called the "World Model," which addresses the entities, relations,
events, and actions in the application domain, and the "External Interface," which

addresses the distinct display screens, menus, keys, and paraphernalia of interaction with

the executing target code.

Team Design Support

No capabilities explicitly for team design support have been built into Spectrum
as yet.

Documentation and Output

The specifications created for the World Model and External Interface can be

printed from system files. The significant ouput of Spectrum is automatically generated
code, in the C language, to implement the specified application. The code generation

process is based on templates that are internal to Spectrum and that in part are used in
Spectrum's implementation as well.

I
I
1 43

I

3

Static Diagnostics I
The specification tree, windows, and menus limit a designer to just those choices

that are potentially valid at any point. There are no other diagnostic capabilities. I
Simulation 1

None. Spectrum rests in part on a conception that testing requirements are sub-

stantially reduced by automatic code generation from pretested templates. Hence, it may
be argued that running the prototype system provides the most concrete measure of its U
potential performance.

Adaptability 5
The World Model and External Interface are general purpose. No adaptation of

the windows, specification tree, or models is possible. I
Interoperability

No particular cases have been explored for interoperation with other tools, so I
candidates, benefits, and constraints are unknown.

Traceability

No explicit means of tracing specifications back to requirements is provided. 3
Information Modeling Support

Spectrum is based on a predetermined design information model. 3
Distinguishing Capabilities

Spectrum represents an information-oriented design approach that presumably is
suitable for application specialists without strong ADP/programming background. This
approach is expected to enhance potential reusability of specifications and code, but no 3
experience has been gained in that area. Spectrum's particular semantic data model is
unique. Spectrum has been applied to specify an Acquisition Manager's Assistant, for

use in Navy weapon system procurements.

4I
I

44 1
I

I

a APPENDIXJ

I DESIGN/IDEF AND DESIGN'FAMILY

I The phrase "Design/family" refers to the set of products developed by Meta

Software Corporation of Cambridge, Massachusetts. This set includes Design/IDEF,

Design/CPN, MetaDesign, and Design/OA. Design/OA is a set of library routines for
creating graphics and processing text which is used by all of the other tools. MetaDesign

is a general-purpose drawing tool. Design/IDEF is a drawing tool specially designed for

creating and editing IDEF-0, IDEF-1, IDEF-iX, and E-R diagrams. Design/IDEF can

also perform some simple static checks. Design/CPN is a tool that can simulate anno-
I tated IDEF-0 diagrams from the Design/IDEF tool by converting the IDEF-0 diagrams

into a hierarchical colored Petri net (HCPN) and simulating the resulting net.

Design/CPN can also simulate HCPNs directly. Most of this review concentrates on

Design/IDEF combined with Design/CPN.

Both Design/OA and MetaDesign execute on the IBM-PC and the Apple Macin-

tosh computers. Design/IDEF executes on a Macintosh with at least 2 Mbytes and the

IBM-PC. Design/CPN executes on a Macintosh II or on a networked configuration of a3 Macintosh and a Sun workstation. A version of Design/family under X-Windows for the

Sun and DEC workstations is being created now.

3 Graphics and Editing

The tools MetaDesign, Design/IDEF, and Design/CPN have an effective graphi-5 cal interface. Objects can be laid out in any manner and manipulated via a mouse.

Design/IDEF does not have an expand-in-place display option as do RDD and STATE-

MATE. This means that diagram decompositions cannot be seen in the same diagram as

higher diagram levels, but must be shown in separate windows.

Design Semantics and Support

The semantics of Design/IDEF are determined by annotating IDEF-0 diagrams

and translating the annotated IDEF-0 diagrams into HCPNs. HCPNs are an extension to

Petri nets which add "colors," roughly analogous to types in computer languages, and

hierarchy, which is similar to the hierarchical layout of many graphical notations [Chiola

88, Jensen 811. The HCPN notation is quite powerful, as evidenced by the large number

of analysis tools whi;h Meta Software plans to build in the future. Process behavior is
described quite formally, but timing behavior is currently difficult to specify. It is unclear5 hhow easily the tool can describe software to hardware allocation. The Design/Family

1 45

I

I

does not fully support the relationships of data in the system being designed. 3
Many systems' successful performance depends upon the time the system or por-

tions of it take to execute their intended function. There are various extensions to basicI
Petri nets that can be used to represent timing information such as, [Coolahan 83] but
additions to HCPNs to represent timing which can be analyzed analytically are still an
ongoing research topic [Marsan]. It is currently possible to create a "master clock" and
put code into each transition of the simulation to model time, and/or add attributes in
tokens to represent time, but this is not a simple approach, nor can this timing informa-
tion be fully analyzed analytically by the tool. Thus HCPNs do not currently represent
timing in a simple manner. 5

Mechanisms of the IDEF-0 diagrams are translated into tokens of an HCPN, and
thus hardware for implementing software can be treated as a specially colored token. It
is unclear if this representation can fully represent software to hardware allocation. I
Hardware to software allocation could also be noted as a comment. Investigating this
aspect of the HCPN notation would require a more detailed report. 3

Process behavior is described formally in Design/CPN, and in fact a strength of
Petri nets is the ability to describe concurrent activities requiring occasional synchroniza-
tion. States, transitions, concurrency, and sequences of operations are easily represented
with Petri nets. Replication can be represented in HCPNs as a color set with a subrange
(essentially an index on a color set) or as different instances of a subnet.

These tools do not fully support the relationships of data in the system being
designed. Design/IDEF can draw IDEF-1, IDEF-1X, and standard E-R diagrams, but I
does little with the resulting diagrams other than perform simple static checks.

Team Design Support I
Design/IDEF includes functions for extracting and combining the database and

models (the diagram set). The extraction routines create records for a subsection of the
database, and the merge routines copy information from one database to another, typi-
cally using a master database as its destination. There is currently no automatic sharing

of the database between multiple simultaneous users. There is no version identification
or configuration management system.

Documentation and Output

MI.,-STD-2167A reports are not automatically generated by Design/IDEF. Sim-
ple reports, such as a list of every box or of every arrow, are available in Design/IDEF.
Executable code is not generated by the tools.

46

I

I
Static Diagnostics

Design/IDEF contains a few simple static diagnostics such as the presence of3names on all arrows and boxes. Design/CPN checks for a number of additional annota-
tions to the IDEF-0 diagrams that it requires, including arc expressions and guards, anno-

tations on channels, and the data dictionary type information. Future directions include a

number of more sophisticated diagnostics such as algorithmicall- determining deadlocks,

livelocks, unsafeness, and unreachable places.

I Meta Software Corporation plans to create an extended version of Design/CPN,
termed Design/CPN Palette, which would add various tools for formal analysis. This
would include construction of occurrence graphs (representing all reachable markings)

calculation and interpretation of invariants, check of structural properties, and reduc-
tions (which shrink the net without changing selected properties). Occurrence graphs
allow the user to determine how the system could enter specific states, perform simple

statistics, and determine strongly connected components. Calculation of invariants

would allow the user to specify conditions that should always be true, which the computer

can then use to algorithmically determine if the condition can ever become false.

3 Simulation

Design/CPN can animate either the set of annotated IDEF-0 diagrams or an

HCPN. Code segments in the general-purpose Standard ML computer language can be
attached to the transitions of the simulation. These code segments could be used for such
purposes as instrumentation, communication with other processes, and extension of the

3HCPN model.

Standard ML is a general-purpose computer language originally created at the

SUniversity of Edinburgh, Scotland. ML is a functional language; this means that func-
tions are first-class objects which may be passed as arguments, returned as results, and

stored in variables. Like Ada, it is strongly typed and supports exception handling and

abstract types. Like Common Lisp, ML is often used as an interactive interpretive
language, and ML automatically determines the type of objects to satisfy its strong typing.3Like both Ada and Common Lisp, it is statically scoped and has a module facility

[Harper 86]. Although ML is not as common a computer language as Ada, Pascal, or

LISP, it is a proven language.

A user can instrument a simulation in Design/CPN by writing ML code for
animating the system diagrams, storing information in log files, performing statistics, or
other instrumentation needs that could occur on a system transition. The animation of a
diagram can be performed by changing shading, color, or line-thicknesses in the

I
47I

I

I

diagrams. Since ML is a general-purpose language ML can also be used to represent 3
information not easily modeled by HCPNs, such as changing attributes of the net tokens

or determining what token should perform a transition (technically, what set of tokens

should be bound). ML can also be used to communicate with other processes. The tools
do not generate self-standing code.

Adaptability I
It is possible to add comment icons and change the display attributes of icons in

Design/IDEF. Design/IDEF does not have user-tailored semantics, and the underlying
database schema is not available to the user. MetaDesign allows the user to choose vari-

ous icons since it is essentially a drawing tool. The ML language and Design/OA library 3
can be used to access and change diagrams. Source code is available.

Interoperability 3
There are no current products that interface to other CASE tools. There is a

"reference report" in Design/IDEF that can output all data in the database, but the I
report does not include the schema used in the current database. There is currently no

generalized import function, nor is there any function to import or export the database

schemas. Design/IDEF can output Macintosh pic format.

Traceability

There is no built-in traceability to system requirements, for recording decisions
made, or for who made what decisions when.

Information Modeling Support 3
The Design/family database is not relational, cannot be accessed by SQL, and

does not support many information modeling concepts such as reverse relations or inheri- I
tance. Data storage and retrieval is split into two sections, a low-level set of routines

used by tools and a high-level set for use by users. The low-level set is accessed using 3
ISAM and is a doubly indexed B-tree, each record of which is indexed by record name

and record type. Design/IDEF contains high-level access routines for creating record

types, displaying records, and editing records. It limits record types to 7 fields per

record, and each field can be a complex field pointing to another record type. This

indirection can go a maximum of ten levels deep. The set of all record types and the data 3
they contain is considered the database for a project. Diagrams are not stored in this

form; each set of hierarchical pages is called a "model", and more than one model may

reference a single database.

48 3

I

I As noted previously, Design/IDEF provides for drawing IDEF-1X data model
diagrams, but does not extract diagram information for any database processing by a

3user.
Distinguishing Capabilities

3 The merging of IDEF-0 diagramming with HCPNs is unique among CASE tools
so far as the reviewers can determine. Petri nets are designed to represent highly con-
current processes with limited resources. HCPNs are an extension to Petri nets which
add two well-known concepts, hierarchical decomposition and strong typing, and thus
HCPNs should be a reasonable approach for representing complex systems. Petri nets3 and extensions such as HCPNs have a large body of formal mathematics to support them;
[Rosenberg 87] contains 2074 entries. HCPNs appear to be a very reasonable approach
for describing systems in which ambiguity cannot be tolerated, precise process synchrony
is important, and/or where resource use is an important system factor [Davis 881. The
future analytical capabilities planned for Design/CPN are quite unusual among current3 CASE tools. As a potential minus, systems described using Petri nets tend to be difficult
for applications-oriented non-computer experts to understand [Chiola 88, Jensen 81].

4
I
!

I
II

iI

I

I
I 49

I
I
U
I
U
I
I
I
U
I
I
I
I
I
I
I
I

50 1

I

I
5 APPENDIX K

3 001

S001 [Hamilton 86, Hamilton 88] refers to a toolset for modeling a system as a

dynamic entity and also describing the same system as a static entity. The tool was

developed by Hamilton Technologies, Inc., Cambridge, MA. AXES is an executable

specification language available with 001, which combines functional and object-oriented
design paradigms. 001 is commercially available on DEC VAX computers running Vax3 VMS 4.4 or higher, including the VAXstation. Hamilton Technologies is currently working

to transport 001 to Sun workstations.

3 Graphics and Editing

001 includes graphics and text editors for building systems. In order to create3 diagrams, such as an object Type Map (TMap) for building a data model, the user selects

options from the pull down menus, moves around a diagram via the cursor keys, and

creates and labels design objects via keyboard input. The current version of 001 does notIsupport the use of a mouse for editing. 001 automatically draws diagrams from their tex-
tual definition and generates a textual definition from a graphical diagram (i.e., the

1 design is stored in the database as text).

User interface capabilities (e.g., fast browsing through system libraries) are pro-
vided along with the language generation tools called RATs (Resource Allocation Tools).

A generic RAT is supplied with the 001. The user can build custom RATs using the gen-
eric RAT as a model template. The user then fills in the template as necessary. Documen-3 tation, reports, and source code are generated by this generalized RAT.

Design Semantics and Support

ISystems in 001/AXES are defined in terms of functions, types, and structures. A

function transforms its input typed objects to output typed objects using its children func-3tions. A structure is used to specify how the children functions perform to support their

parent in transforming its input to its output. The type of an object is defined in terms of a
structure of children types. The decomposition of a type (called a parameterized type)

defines the primitive functional interactions possible between a parent object and its chil-
dren objects. These primitive functions are used in constructing more abstract functions.3The functional aspect of a system is defined using a Function Map (FMap) which is a

hierarchy of functions. The type (information or object modeling) aspect of a system is3 defined using a Type Map (TMap) which is a hierarchy of object types. Leaf node

51I
I

functions form a data flow-like network where primitive functions transform objects from 3
state to state. A TMap shows the network of relationships between primitive objects that

may hold for a particular state.

'The AXES model for a process is a function. In a 001/AXES model, all functions

are formally related to each other in terms of their properties. One can explicitly desig-

nate a function or, once a function is scheduled in a particular implementation, it
becomes a process. A 001/AXES model provides the necessary information for automati-

cally allocating resources to specific functions as processes with varying implementation

configurations. These configurations are dependent on the implementation environment's

operating system, application language, and the designer's selected process structures. 3
Functions are decomposed into lower level functions using three primitive control

structures or abstract control structures defined in terms of these primitive control struc-

tures which define the granularity of processes: OR, JOIN, and INCLUDE. The OR I
structure is used for decision control; that is, using the input of the parent (or decision)

function, a partition function decides which child function is to be selected to perform for 3
the parent. The INCLUDE structure is used to partition the parent's input into two dis-

joint sets of data objects which are then distributed to the children functions. The JOIN

structure is used to express a dependence relationship between a parent and its two chil- U
dren. These structures are used in a Function Control Map (FMap), which defines the

parent's behavior in terms of its children. The FMap is a network of relationships 3
between instances of functions. The Type Map (TMap) is a network of relationships

between objects.

001/AXES models a particular target system, its interoperative support systems,

and their containing environment as functions. AXES has a non-procedural computa-

tional semantics that can be translated automatically into a procedural higher-order I
language. A Resource Allocation Tool (RAT) does this by mapping a 001/AXES func-
tional and type specification onto some computational resource. Automatic code generat-

ing RATs are available in version 1 for C. FORTRAN and Ada TMap code generation

capabilities are to.be supported in the future. I
Team Design Support

No special team design support is evident. 3
Documentation and Output

001 provides for automatic generation of code from system specifications, and 3
allows the user to annotate the code via the RAT query and generation languages. The
RoadMap of models in a library, TMaps, and FMaps may be printed using Postscript. 3

52

3

I

Documents may be generated by tailoring a generalized RAT.

Static Diagnostics

The principal analysis tool of the 001 environment is the Analyzer. It is used to
ensure the consistency of typing and function interfaces. Time in a 001/AXES3 specification can be defined in more than one way. For example, a TIME data type can

be actively used within the system itself for controlling timing or WHERE statements can
be used to specify timing constraints about a 001/AXES language object such as a func-

tion. The amount of time a function (e.g., a single instance of an operation definition)
takes to execute can be explicitly defined.

IA system can be specified in 001/AXES to be a computer or resource architecture

independent model by separating the functional (i.e., what is to be done) from the5resource architecture. The functionality of a system is defined by the use of FMaps and

TMaps. A designer specifies a resource architecture as a complex object also using
FMaps and TMaps. The FMaps are used to define the construction procedure from which

a resource architecture object will result.

A software/hardware system resource allocation mapping is made by specifying
which elemer'. of the functional architecture are to be executed on which elements of the
resource architecture object.

3 Simulation

Simulations may be performed by several methods with 001. Currently, a system

can be defined and automatically developed with the functional and resource architec-
tures interwoven. In this case the primitive functions at the leaves of the FMaps are used

to gather performance information during the execution of a system. The statements in

O01/AXES relating to the static state of a system allow for a simulator to automatically
monitor a system's dynamic behavior with respect to constraints. Although the dynamic3definitions and some of the static descriptions of a 001 system are utilized in the automa-

tion of a 001 system, some of the static descriptions currently are used in a semi-
automated mode. They serve as input to an automated fine-grained simulator.

A fine-grained event simulator is being developed to take advantage of the real-
time semantics of 001/AXES, the description of the static entities of a system, and the

separation between a functional system and its resource architecture system. A classical
event model simulator prototype has been constructed. This simulator has been3developed to automatically monitor some aspects of the dynamic behavior of certain

kinds of 001 systems.

5
3 53

I

Adaptability 5
Hamilton Technology does not license the source code for 001/ AXES, nor does it

permit a user to modify the generic RAT or the Analyzer. Hamilton Technology provides
interface specifications so that a user can add to the CASE tool (e.g., add menu options).
Hamilton Technology provides custom hooks (e.g., add a different graphics front-end to
001/AXES) for a fee.

Interoperability 3
001 provides limited interoperability on the basis of input or output data files. For

example, the code generated by 001 can be exported to other tools or host environments.
In addition, 001 permits the user to import data for simulation support.

Traceability 3
Tracing is limited to simple decomposition of objects.

Information Modeling Support

001 supports inheritance. For example, in a TMap, a hierarchical system of data
types can be defined. Types at the nodes of a TMap inherit their behavior in terms of 3
primitive operations from the parameterized type (or structure) used for their decomposi-
tion. Each type inherits the properties of its subtypes. 3
Distinguishing Capabilities

001/AXES captures system behavior and resource allocations. Simulation from 3
functional specifications is also a distinguishing capability.

I
I
I
I
I
I

54 1
I

I

1 APPENDIX L

3 FORESIGHT

I Foresight is a front-end CASE tool for specifying and analyzing system require-
ments via simulation and animation. Foresight is a product of Athena Systems, Inc., of5 Sunnyvale, California. It currently runs on the Sun/3, Sun/4, the Sun SPARC worksta-
tions, and the HP 9000 series. The system is written in C++, and the user interface
resides on top of X Windows. Athena Systems is currently porting Foresight to Apollo

and DEC workstations [Athena Systems 891.

g Graphics and Editing

Foresight provides both graphic and text editors. The user-interface to these edi-
tors resembles the standard user interface of the Apple Macintosh. The types of graphic

editors supported by Foresight differ from those found in most of the data flow oriented
CASE tools in that the tool provides a general-purpose graphics editor similar to StP's

3 PICture editor.

The data flow diagram and state transition diagram editors provide a very exten-
sive library of modeling constructs. In addition to annotation elements, the data flow

diagram editor provides has an extended palette of design objects, allowing the user to
differentiate between different types of data flows (discrete vs. continuous), prompts
(e.g., trigger, enable, disable, suspend, resume), and so on. The state transition editor
provides for graphical annotations, as well as initial state, state, transition, I/O block,3 and reshaper design objects on the menu.

Design Semantics and Support

3 Foresight is similar to i-Logix's Statemate, in that both tools can analyze and
predict the behavior of real-time systems from textual and graphical specification of sys-
tem requirements, and simulation and animation of the requirements. Foresight and

Statemate provide both functional and constraint modeling tools. Both tools' notations
are based on Structured Design/Structured Analysis with real-time extensions. The

Smajor difference between Foresight and Statemate is notation. Both use a form of data
flow diagrams, but Foresight relies on state transition diagrams, whereas Statemate uses
state charts, a more powerful notation. Neither tool has come up with a solution to the

problem of representing and simulating replicated processes. Foresight does have a con-
cept called a reusable process. A predefined set of these processes are made available to5 the user, and user-defined processes may be added to the library. The reusable process

/

5 55

I

U

notation does not necessary solve the problem of notating replication since for each 5
instance of a replicated process that is required, the user must copy and paste the
corresponding reusable library element.

Foresight's constraint modeling capability can specify timing constraints between
a system's components and external events. In addition, Foresight's large set of modeling
constructs makes it possible to specify and simulate software, hardware, and firmware
systems with the same tool.

Foresight's formal notation can be used to model both primitive and composite U
data types. Low-level data elements are modeled with primitive data types. Foresight's
primitive data types are: boolean, real, integer, complex, enumerated, and string. Coin- 3
posite data types are modeled as arrays and records.

The tool provides support for the description and specification of real-time sys- -
tems via extensions to SAISD. In addition, Foresight supports the ESML standardiza-
tion effort (i.e., standards for real-time system specification). The tool also provides
extensions to ESML for use in simulating a real-time system.

Three types of data flows are available for use in modeling a system. Continuous
flows are flows that are available over an interval of time. Discrete flows are only avail- U
able at a point in time. Control flows represent messages that are used to activate or
deactivate a process. All three types of flows are used by Foresight's simulation facility. 3

Processes can be decomposed into state transition diagrams and mini-specs.
These three components can be used to define abstract processes. 3

The tool provides a predefined set of reusable functions and operations, called
Library Elements. These functions and operations are executable, and fall into five
major categories:

a. Math and logic (e.g., absolute value, sin, cos, adder) 3
b. Signal processing (e.g., hold, sample, Z delay)

c. Timing and validation (e.g., event, max delay, elapsed time) 3
d. Data manipulation (e.g., splitter, merger, queue) I
e. Electronic I/O panel (i.e., I/O devices)

The user may create additional functions and operations as needed. User-

defined library units will not be used by the simulation tool unless the user modifies
Foresight's source code.

56

I

I
3 Team Design Support

Foresight relies on the host machine to provide configuration and file manage-3 ment facilities.

Documentation and Output

I The graphic and text editors support PostScript formatted output. Templates are
available for outputting specification and design data in MIL-STD-2167A documentation

3 format.

Static Diagnostics

I Foresight provides a static analyzer for checking the syntax of processes and the
decomposition of processes, including low-level objects such as mini-specs.

I Simulation

Foresight provides the user with an interactive, discrete-event simulator. Values

for a system's data flows can be entered by the designer during a simulation. The code
that is generated to run the simulation can be viewed by the user, and exported to other
development tools for implementation of the system. Output during the simulation can be
viewed in either graphical or textual form. The electronic I/O panel elements are used to
drive the simulation of a system.

The simulator supports animation, stepping through a simulation, as well as three
running modes: step, fire, and advance. The simulation can be stopped and restarted at
any time, allowing for further development of a model before continuing the simulation of
a system.

3 Mini-specs are executable by the simulator. The specifications use a formal syn-
tax which is a subset of the Ada programming language, including: assignment, condi-
tional branching, case, while, and for looping constructs. Athena Systems is currently
working on a bi-directional translator to and from Ada, in order to further facilitate the
reverse engineering process (i.e., import existing code for analysis).

I Interoperability with Other Tools

Foresight stores specification and design information in a proprietary object

management system (OMS). The data formats used by Foresight's OMS are published,
permitting the user to import and export data. The granularity at which objects are3 stored can be specified by the user.

I
57I

I

U

Traceability I
Foresight does not support traceability of design data. 1

Information Modeling Support

Foresight supports inheritance of properties by design objects (e.g., processes). 3
Foresight does not have an ERA diagram editor, nor does it have a view mechanism for
its underlying database. Foresight provides a formal set of rules for the propagation of
data flows throughout the hierarchy of data flow diagrams. Furthermore, rules are pro- I
vided for the execution of processes. For example, a logical "AND" process must have
all its inputs before firing, and a logical "OR" process will fire when any inputs are avail-
able. If control flows come into a process, the process must be activated before it can be
executed. Upon firing, the underlying description and the process are executed by
Foresight's simulation/animation tools. 1
Distinguishing Capabilities

The distinguishing characteristics of Foresight are that it supports interactive I
simulation and animation, specification of reusable components, and constraint and tim-
ing modeling. 5

I
I

I
I
I
I
I

58

I

I
3 APPENDIX M

g VIRTUAL SOFTWARE FACTORY

5 The Virtual Software Factory (VSF) is a meta-CASE tool. It is a product of Sys-
tematica Limited, Bournemouth, England. VSF currently runs on the Sun 3 and 4 series
workstations and the DEC VAXstation 3000 and 3100 series. A version is planned for
the IBM PS/2 series. The philosophy underlying VSF is that integration should occur at
the information level rather than at the tool level. This does not imply that VSF could notU be integrated into another framework. VSF addresses two types of integration: method
and design database integration. The assumption underlying this tool is that only a
minimal standard for integration is needed. The goal is to minimize the overhead associ-
ated with adding and deleting tools from a Software Engineering Environment (SEE).
VSF is intended to be flexible enough that methodologies supported by a tool can be
added or deleted from the SEE. Tools can be rapidly developed to work with existing
methodologies or to implement a new methodology. VSF is a meta-CASE tool in that the
user can define a CASE tool based on the methodology required to be used for a software
project. VSF is a workbench, not a SEE, the difference being that a workbench is a set of
tools that are not integrated, whereas the tools in a SEE are all integrated. VSF provides
for verifiability, tailorability, and traceability across the entire life cycle. VSF consists of

two tool sets: Methods Engineering Workbench (VSF/MWB), and Analyst Workbench
(VSF/AWB).

U Graphics and Editing

VSF provides for graphical and textual editing. The methods workbench is pri-
marily textually-oriented. The MWB is used to define the graphics environment for the
workbench to be used by the software engineers. The SWB supports the use of a mouse,3menus, and graphics. How these capabilities can be accessed is determined by the
methods engineer when he writes the rules implementing a particular methodology.

Design Semantics and Support

3 Methods Engineering Workbench

The MWB is used to define methodologies and configure the design environment3 in which a software engineer, referred to in the Systematica literature as an analyst, must
work within for a particular project or set of projects. The assumption underlying this tool
is that an organization has a full-time methodologist, referred to as a methods engineer,

59I
I

U

that is responsible for defining and maintaining in VSF the various methodologies sup- 'I
ported by the organization. The MWB provides two types of configurability. The methods
engineer first uses the MWB to define the conceptual model for a methodology, consisting
of the structure (i.e., types) and rules (i.e., interaction between types). The rules provide
a "filter" mechanism for performing syntax and semantic checks.

The second type of configurability supplied is ,ile definition of notations for a I
methodology. The methods engineer configures the design editors via the notation and
syntax definitions. This is done by defining a set of templates that control the presenta- 3
tion of text and graphics, including documentation standards for the methodology.

Analyst Workbench I
The AWB consists of the set of graphical and textual editors that were predefined

for methodologies in the MWB. These editors provide for entering, storing, updating, and
viewing design information. A database browser, similar to that of TRW's DCDS, is pro-
vided for use in making ad hoc queries of the design and methods databases. Documents I
are stored and retrieved using a hypertext approach. A document is a piece of the design
defined by the user (i.e., the level of granularity is determined by the methods engineer).
VSF has a built-in file manager.

Changes to the methodology made via the MWB are propagated throughout the
design databases associated with that methodology. Syntax and semantics checks are I
done on-line, and additional checks may are invoked by the analyst.

VSF can automatically generate code from a design if code generation templates U
have been predefined by the methods engineer. The completeness of the code depends on
the methodology used. Systematica's implementation of the HOOD methodology in VSF
was demonstrated. We were able to graphically design a multi-sensor multi-tasking sys-
tem using the HOOD methodology, and then generate the corresponding Ada source

code. In addition, we were able to modify the HOOD methodology rule base (i.e., the I
filter mechanism) using the MWB. We then verified that the VSF filter that performs rule
checking actually propagated and enforced the rules we specified. 3

Two methodologies that have been implemented using VSF and are available as
off-the-shelf tools are SSADM and HOOD/Ada. SSADM is a British government stan-

dard for EDP system development. HOOD is a hierarchical object-oriented design
method and has become a de facto standard for European aerospace Ada development.
Other methods have been implemented by Systematica and VSF users, including CORE, U
a requirements capture method used in some European aerospace organizations, and

Mascot 3/Ada, a British Defense Ministry standard for real-time systems development. 3
60

I

I The methods engineer defines the granularity which is required to conduct

configuration management and project management. That is, the user defines "frag-

ments" of a design, independent of units of documentation, which logically should be
managed as one piece. The user uses the configuration and project management tools5 available in the host environment. The host environment is a shell around VSF.

Formalism

I The formalism underlying VSF is a decidable second-order logic. This logic
allows the user to specify:

I o Predicate existence through naming

I o Documents as a set of attribute grammars

* Describe context sensitive grammars (i.e., types and properties)

3 o Explicit quantification

The methods engineer is responsible for specifying concepts, and must already be
familiar with the logic formalisms required to do so. VSF comes with a high-level, inter-
nal logic specification language that resembles PROLOG (the language does perform
PROLOG-like operations such as pattern matching). VSF itself, however, is written in

Ada, and consists of approximately 300,000 lines of source code.

VSF also supports beliefs, belief generation rules, pre- and post- conditions, etc.
Each of these items can be associated with a particular state.

Team Design Support

The AWB does not provide for multi-user design. Instead, it does provide for
merging of design information into a central design database via the VSF rI:erge facility.

I Documentation and Output

The methods engineer specifies the documentation, such as MIL-STD-2167A,
required by a methodology via the MWB. The design databases created via VSF are
stored in a VSF-specific format. VSF can also produce an ASCII version of a database,3 as well as a printable form. For graphics, VSF supports Postscript, Interleaf, and HPGL
standard data formats.

Static Diagnostics

The methods engineer, using the filter mechanism, implements the checking rules
for static diagnostics used by the analyst.

361

U
Simulation

No capability for design simulation or dynamic checking is provided by VSF.

Adaptability 1
The underlying concept of VSF is as an adaptable environment, as described in

the introduction.

Interoperability with Other Tools 3
VSF has a data import/export facility. Any design fragment can be "conserved"

to another tool, whose output can then be "merged" (with con ict checking) back into the

VSF workbench.

Traceability

The methods engineer can define a traceability model between design objects of
earlier or later project phases. VSF can treat individual clauses of a document, such as a

contract document or RFQ, as a design object. Traceability links can be created between
these objects. Successive links could be created to go through to code generation.

Information Modeling Support I
VSF support meta-modeling constructs such as multiple inheritance across hierar-

chies, multiple design databases, automatic translation between methodologies, and
specification and enforcement of rules for methodologies. The amount of semantics

incorporated into the modeling are only limited by the limitations of the underlying VSF 3
formalisms (logic constructs). Schema(s) can be described using the VSF formalisms.

Distinguishing Capabilities 3
VSF represents a different approach from most CASE tools. It can be con-

sidered as a meta-CASE tool for building methodologies and for interactively prototyping

methodologies.

6I

I

I

U
3 APPENDIX N

ADAGEN

SAdagen is a tool produced by Mark V Systems Limited of Encino, California. Adagen is

primarily a single general-purpose graphical editor which can be tailored for specific

notations, and incl ides support for a number of notations. Adagen also includes a pro-

gram to generate Ada code from Buhr diagrams and a reverse engineering program to

create Buhr and compilation dependency diagrams from Ada code. Adagen operates on

Smany platforms, including IBM-PC compatibles (under Microsoft Windows), Apple

Macintosh, Sun 3 and SPARCstation, Hewlett-Packard 9000/300 series, Apollo 2000,

3000, and 4000 families, Data General AViiON, MIPS, and the DEC Vaxstation under

VMS. The IBM-PC DOS version uses Microsoft Windows, the Macintosh uses the Multi-

Finder system, and all other platforms use X-Windows.3
Graphics and Editing

5 The system had good performance on the IBM-PC but was relatively slow on a

Sun under the X-Windows system, possibly due more to X-Windows itself than Adagen.3 The graphical editor is intuitive and easy to use and includes a one-level undo. Online

help displays are available.

I Design Semantics and Support

Adagen supports the graphical editing of many different design notations, in par-
ticular a number of object-oriented notations. These include Booch diagrams (1985 ver-

sion), Buhr diagrams (1984 and 1990 versions), Object Oriented Software Development3 (OOSD) by Ed Colbert (not be confused with OOSD by Anthony Wasserman), Object

Oriented Requirements Analysis (OORA) by Peter Coad, Ada box structures by Ed

Comer, and Don Firesmith's Ada Development Method notation. Adagen also supports

editing "traditional" notations such as data flow diagrams (Yourdon/DeMarco and

Gane/Sarson) with Ward/Mellor real-time extensions, state transition diagrams, data3 model diagrams, and structure Constantine charts. Adagen also support Rnets and Fnets

(from DCDS), functional flow diagrams, James Martin's action diagrams, and Chen's

3 Entity Relationship Attribute notation.

I
63I

I

U

Team Design Support I
Adagen provides no team design support.

Documentation and Output I
Depending on the platform, Adagen can produce output of its text and graphics

in Ventura Publisher, Aldus PageMaker, Unix pic, Apple .pict metafile, Interleaf,
Framemaker, or Postscript format. There are no forms for standard documents such as 3
MIL-STD-2167A included with the tool.

Static Diagnostics

Each diagram type may have a rule specifying the consistency required between a 3
diagram and its parent. This rule is checked when a diagram is loaded into the editor.

Currently there are two possible choices for this rule, "supra-constrained" or "interface-
constrained." In a diagram type which is "supra-constrained" the input and output flows
of a child diagram must be the same as its parent object. Data flow diagrams, for exam-
ple, are "supra-constrained." In a diagram type which is "interface-constrained" the 3
outermost graphical object must have the same interfaces as the higher level object and
the arcs are not conserved. Buhr diagrams, for example, are "interface-constrained."

Version 1.6 includes some checks, particularly for Buhr diagrams, for checking a
diagram's contents interactively. These cannot be modified by the user in version 1.6.
Mark V states that version 1.7 will use a special language to perform these interactive I
checks and thus allow users to create their own checks. There is no batch processing

mode for checking a set of diagrams, either for the diagram contents or for consistency 3
with the diagram parent.

Simulation U
Adagen has no simulation capability per se. Adagen can generate Ada code 3

from Buhr diagrams via a Prolog program. Source for this program is available under
separate license from Mark V.

Adaptability

Menu options and accelerator keys can be modified by users, and each menu
option or key can choose a new icon or cause certain tool operations (termed "atoms") to

64 U

I
be executed. The transformations to and from Ada can be tailored by a knowledgeable

user. Mark V states that version 1.7 of the tool will have semantic binding of icons to

database entities through BNF-like rules, allowing users to define their own constraint

checking rules, and arbitrary programs to be executed instead of the set list of atoms.

Mark V appears to be working to make their tool more extensible by knowledgeable3 users. Users cannot create their own atoms now, but the vendor states that version 1.7

will have this capability.

U
Interoperability

3 On the IBM-PC Adagen may be used both as a client and as a server using the
Microsoft Dynamic Data Exchange (DDE) capability Thus Adagen on the IBM-PC may* consider other tools as leaves of its database (using other programs such as SQL servers

to access the data) and is fully operable by other programs. This capability is expected to
be available on the Apple Macintosh when the System 7 message capability is available.3 Mark V states that it would be easy to add similar capabilities to Adagen using TCP/IP if

customers desire.

U Traceability

Any Adagen object may be linked to any other object. There is no typing of the
link, though some typing can be inferred by the type of the diagram containing object.
This linking is done through an extremely simple mechanism: an object is selected (on

one diagram) and Adagen puts its object identifier on a list. Other objects on other

diagrams may be selected and linked to the first object.U
Information Modeling Support

SVersion 1.6 only edits diagrams and does not support a separate database. Mark
V states that version 1.7 will include an ERA database with some object-oriented exten-
sions (such as inheritance) and a specialized Prolog-like language for entering rules.

Distinguishing Capabilities

Adagen's distinguishing capabilities are its extensibility, Ada code generation
* and reverse-engineering features.

Adagen can reverse-engineer existing Ada code into compilation dependency
diagrams and Buhr diagrams. The appearance of the resulting diagrams can be tailored

65

I
I

U
by a user, and in fact such tailoring is necessary to produce legible diagrams. Iterative I
cycling between text and graphics is not supported, however, because some Ada con-
structs are not entered back into the diagrams and a large number of settings must be indi-

vidually adjusted. [his capability does, however, appear promising.

I
I

I
U
I
I
I
I
I

I

I

I

U
3 APPENDIX 0

3 ACRONYMS

3 Associated

Term Meaning Tool

ADAS Architecture Design and Assessment System Teamwork

ASA Advanced System Architectures Auto-G

AWB Analyst Workbench VSF3 CASE Computer-aided Software or Systems Engineering tool

CCC Change Configuration Control

CDIF CASE Design Interchange Format

DBMS Database Management System

DCDS Distributed Computing Design System DCDS3 DDL Distributed Design Language DCDS

DDM Distributed Design Method DCDS

DEC Digital Equipment Corporation

DOD Department of Defense

DPI Document Production Interface Teamwork

DPS Document Preparation System StP

E-R Entity-Relationship

ERA Entity, Relationship, Attribute Model
FMap Function Map 001
Fnet Function Network DCDS, RDD

HCPN Hierarchical Colored Petri Net Design/family
IBM International Business Machines

ICAM Integrated Computer-Aided Manufacturing

IDE Interactive Development Environments StP

IDEF ICAM Definition (method)

ISAM Indexed Sequential Access Method

Inet Item Network DCDS, RDD

MCM Model Configuration Management Teamwork

MDL Module Development Language DCDS

I
I

67I
I

U

MDM Module Development Method DCDS 3
MWB Methods Engineering Workbench VSF

OAE Object Annotation Editor StP

OMS Object Management System
PC Personal Computer
RATs Resource Allocation Tools 001 1
RDD Requirements Driven Design RDD
RSL Requirements Specification Language DCDS

RVTS Requirements Verification Tool Set TAGS
SADMT SDI Architecture Dataflow Modeling Technique

SC Simulation Compiler TAGS 3
SDI Strategic Defense Initiative
SDIO Strategic Defense Initiative Organization

SDL SDI System Description Language U
SEE Software Engineering Environment
SQL Structured Query Language 3
SREM Software Requirements Engineering Method DCDS

SSL System Specification Language DCDS, RDD

SYSREM System Requirements Engineering Method DCDS U
StP Software through Pictures StP

TAGS Technology for the Automated Generation of Systems TAGS
TMap Type Map 001 3
TSL Test Support Language DCDS

TSM Test Support Method DCDS U
USASDC U.S. Army Strategic Defense Command DCDS
VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit
VSF Virtual Software Factory VSF

I
I

I
68!

I

I

I
References

[Athena Systems 891 Athena Systems, Inc. 1989. Foresight: Modeling and Simula-

tion Toolset for Real-Time System Development, Athena Sys-

tems, Inc, Sunnyvale, CA.

[Chiola 88] Chiola, G., Bruno, G., and Demaria, T. 1988. Introducting a

color formalism into generalized stochastic Petri nets.

Proceedings of the 9th European Workshop on Applications3 and Theory of Petri Nets, Venice, pp. 202-215.

[Cohen 87] Cohen, Howard, et al., 1987. SDI Architecture Dataflow
Modeling Technique (SADMT) Simulation Framework. IDA

Paper P-2036 (Draft), Institute for Defense Analyses, Alex-

andria, VA.

[Coolahan 83] Coolahan, Jr, James E, and Roussopoulos, Nicholas. 1983.

Timing Requirements for Time-Driven Systems Using Aug-

mented Petri Nets. IEEE Transactions of Software Engineer-
ing, Vol. SE-9, No. 5, pp. 6003-6616.

[Davis 881 Davis, Alan M. 1988. A Comparison of Techniques for the
Specification of External System Behavior. Communications

of the ACM, pp. 1098-1115.

[Fife 87] Fife, D. (Ed.). 1987. Evaluation of Computer-Aided System

Design Tools for SDI Battle Management/C3 Architecture

Development. IDA Paper P-2062, Institute for Defense Ana-
lyses, Alexandria, VA.

I [Hamilton 861 Hamilton, M. H. 1986. Zero-Defect Software: The Elusive

Goal. IEEE Spectrum, pp. 48-53.

I [Hamilton 881 Hamilton, M. H., and Hackler, R. 1988. The Realization of

Ultra Reliable Models, Simulations and Software Systems.3 Hamilton Technologies, Inc.

[Harel 87] Harel, David. 1987. Statecharts: a Visual Formalism for3 Complex Systems, Science of Computer Programming, pp.
231-274.

I 69

I

I

[Harel 88 1larcl. David. 1988. STATEMATE: A Working Environment
for the Development of Complex Reactive Systems. Pro. 10th

IEEL International Conference on Software Engineering.

[Harel 901 Harel, David, Lachover, H., Naamad, A., Pnueli, A., Politi,

M., Sherman, R., Shtull-Trauring, A., and Trakhtenbrot, M.
1990. STATEMENT: A Working Environment for the
Development of Complex Reactive Systems. IEEE Transac-

tions on Software Engineering, Vol. 16, No. 4.

[Harper 861 Harper, Robert, MacQueen, David, and Milner, Robin. 1986.

Standard ML Technical Report ESC-LFCS-86-2, University

of Edinburgh, LFCS, Department of Computer Science,

University of Edinburgh, The King's Buildings, Edinburgh I
EH9 3JZ.

[IDE 88] Interactive Development Evnironments. Software through 5
Pictures Release 4.0 User Manual (Sun Version), San Fran-

cisco, CA.

[Jensen 811 Jensen, Kurt. 1981. Coloured Petri Nets and the invariant-

method. Theoretical Computer Science, No. 14, pp. 317-336. I
[Linn 88] Linn, J. L., et al. 1988. Strategic Defense Initiative Architec-

ture Dataflow Modeling Technique Version 1.5. IDA Paper

P-2035, Institute for Defense Analyses, Alexandria, Va.

[Marsan] Marsan, M. A. and Chiola, G. On petri nets with determinis-

tic and exponential firing times, in [Rosenberg]. pp. 104-132.

[Rosenberg 87 ! Rosenberg, G. (Ed.). 1987 Advances in Petri Nets. Lecture

Notes of Computer Science, Vol. 266, Springer-Velag.

II
I
I

70 3
I

Distribution List for IDA Paper P-2177

I NAME AND ADDRESS NUMBER OF COPIES

3 Sponsor

Lt. Col. James Sweeder 3
Program Manager, Software Engineering
SDIO/ENA
The Pentagon
Room 1E149
Washington, DC 20301-7100

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Mr. Karl H. Shingler
Department of the Air Force
Software Engineering Institute
Joint Program Office (ESD)
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Chuck Lillie
SAIC
1710 Goodridge Drive
P.O. Box 13033 McLean, VA 22102

Jack Kleinert
SAIC
1710 Goodridge Drive
P.O. Box 1303
McLean, VA 22102

I Joyce Lytle
SAIC
1710 Goodridge Drive
P.O. Box 1303
McLean, VA 22102

I
I
I
3 Distribution List-i

I
U

NAME AND ADDRESS NUMBER OF COPIES

Mike Mitrione 1 U
Dynamics Research Corp.
1755 Jefferson Davis Hwy
Suite 802
Arlington, VA 22202

Hobart Mendenhall 1
CAE Link

11800 Tech Road
Silver Spring, MD 20904 1
Ken Finscher
Teledyne Brown Engineering
Stop 56
Cummings Research Park
P.O. Box 070007
Huntsville AL 35807-7007 I
Debra Yeagle 1
Naval Surface Warfare Ctr.
Code F31 I
Dahlgren, VA 22448-5000

Hui Huang 1 i
NIST
Bldg 220, Room B124 1
Gaithersburg, MD 20899

John Salasin 1
GTE Govt. Systems Corp.
1700 Research Blvd I
Rockville, MD 20850

LCDR S.M. Vause 1
COMNAVSUPSYSCOM I
Code 0482
Washington, DC 20376

Les Williams 1
Ascent Logic Corporation
180 Rose Orchard Way, Suite 200
San Jose, CA 95134

Jim Long 1
Omnitech Systems
2070 Chain Bridge Road, Suite 320
Vienna, VA 22182 i

I
Distribution List-2 3

I
I

NAME AND ADDRESS NUMBER OF COPIES

I Virgina P. Kobler 1
Chief, Technology Branch
Battle Management Division
US Army Strategic Defense Command
P.O. Box 1500
Huntsville, AL 35807

Mike Guillebeau
TRW
213 Winn Drive
Huntsville, AL 35805

Miguel Carrio
3700 Pender Drive Suite 200
Fairfax, VA 22030

Joe Fox
Software Architecture and Engineering, Inc.
1600 Wilson Blvd. Suite 500
Arlington, VA 22209

Christopher Williams
Advanced System Architectures, LTD
4550 Forbes Blvd.
Lanham, MD 20706

Dr. Anthony Wasserman, President
Interactive Development Environments, Inc.
150 Fourth Street, Suite 210
San Francisco, CA 94103

Ms. Yvonne Cekel
Marketing Manager
Cadre Technologies, Inc.
222 Richmond Street
Providence, RI 02903

* Joseph Weeks
I-Logix Inc.
1101 King Street, Suite 6013 Alexandria, VA 22314

Lawrence Markosian
Reasoning Systems, Inc.
1801 Page Mill Rd, Suite 125
Palo Alto, CA 94304

D
I
3 Distribution List-3

U
I

NAME AND ADDRESS NUMBER OF COPIES

Robert Seltzer 1
Meta Software Corporation
150 Cambridge Park Drive
Cambridge, MA 02140

Dr. Margaret Hamilton 1
Hamilton Technologies, Inc. I
17 Inman Street
Cambridge, Massachusetts 02139

Ted Liu 1
Athena Systems, Inc.
139 Kifer Court 3
Sunnyvale, CA 94086

Richard Iliff 1
SDIO/ENS
The Pentagon
Washington, DC 20301-7100

Michael D. Henry 1
Flight Command and Data Mgmt Systems Section
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109-8099

Gary D. Sheets
Lockheed
Space Station Freedom - SSE System Project
1150 Gemini Avenue
Houston, TX 77058

Axel H. Ahlberg 3
GE Aerospace '
National Test Facility, MS-N9020
Falcon AFB, CO 80912-5000

Shmuel Halevi
Technology Research Group
2 Park Plaza
Suite 570
Boston, MA 02116 i

Robert McCauley 1
Martin Marietta
Falcon AFB, CO 80912-5000 3

I
Distribution List-4 3

I
I

NAME AND ADDRESS NUMBER OF COPIES

Lt. Col. John Morrison
NTBJPO
Falcon AFB, CO 80912-5000

Chuck Howell
M/S Z645
The MITRE Corporation
7525 Colshire Drive
McLean, VA 22102-3481

Joel Van Berkum
Electronic/Software Engineer
OO-ALC/MMETI
Hill AFB, UT 84056-5609

CSED Panel
Dr. Dan A lpert, Director
Program in Science, Technology&Society
University of Illinois
Room 201
912-1/2 West Illinois Street
Urbana, Illinois 61801

I Dr. Thomas C. Brandt
10320 Bluet 'kcrace
Upper Marlboro, MD 20772

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano
Manager, Systems & Software
Engineering Headquarters
IBM Federal Systems Division
6600 Rockledge Dr.3 Bethesda, MD 20817

I

3 p: .. ibution List-5

!
Ii

NAME AND ADDRESS NUMBER OF COPIES

Dr. Ernest W. Kent 1I
Philips Laboratories
345 Scarborogh Road
Briarcliff Manor, NY 10510

Dr. John M. Palms, President 1
Georgia State University
University Plaza
Atlanta, GA 30303

Mr. Keith Uncapher 1
University of Southern California
Olin Hall
330A University Park
Los Angeles, CA 90089-1454

IDA 5
General W.Y. Smith, HO 1
Mr. Philip L. Major, HQ I
Dr. Robert E. Roberts, HQ 1
Ms. Ruth L. Greenstein, HQ 1
Ms. Anne Douville, CSED 1
Dr. Richard J. Ivanetich, CSED 1
Mr. Terry Mayfield, CSED 1
Ms. Sylvia Reynolds, CSED 2
Dr. Richard Wexelblat, CSED 1
Mr. David Wheeler, CSED 15
Dr. Dennis Fife, CSED 50
Mr. Edgar Sibley, CSED 1
Mr. J. Bret Michael, CSED 1
IDA Control & Distribution Vault 3 1

I
3
I
I
1

Distrihution List-6 3

